Holomorphic quantum stochastic cocycles \&

 dilation of minimal quantum dynamical semigroupsJ. Martin Lindsay

Lancaster University, U.K.

Quantum Probability \& Related Topics ICM Satellite Conference, Bangalore, 14-17 August, 2010

Outline

1 Quantum dynamical semigroups: Minimality
2 QS cocycles: Examples, constructions, associated operators
3 Holomorphic contraction semigroups
4 Holomorphic QS cocycles: Generation \& characterisation
5 Dilation of minimal quantum dynamical semigroups

Quantum dynamical semigroups (QDS)

Quantum dynamical semigroups (QDS)

Setup 1/3

- \mathfrak{h} a fixed Hilbert space.

Quantum dynamical semigroups (QDS)

Setup 1/3

- \mathfrak{h} a fixed Hilbert space.

Definition: Quantum dynamical semigroup on $B(\mathfrak{h})$

Quantum dynamical semigroups (QDS)

Setup 1/3

- \mathfrak{h} a fixed Hilbert space.

Definition: Quantum dynamical semigroup on $B(\mathfrak{h})$
A pointwise ultraweakly continuous semigroup $\mathcal{T}=\left(\mathcal{T}_{t}\right)_{t \geq 0}$ of normal, completely positive, contractions on $B(\mathfrak{h})$;

Quantum dynamical semigroups（QDS）

Setup 1／3

－ \mathfrak{h} a fixed Hilbert space．
Definition：Quantum dynamical semigroup on $B(\mathfrak{h})$
A pointwise ultraweakly continuous semigroup $\mathcal{T}=\left(\mathcal{T}_{t}\right)_{t \geq 0}$ of normal，completely positive，contractions on $B(\mathfrak{h})$ ； it is called conservative if it is identity preserving．

Quantum dynamical semigroups (QDS)

Setup 1/3

- \mathfrak{h} a fixed Hilbert space.

Definition: Quantum dynamical semigroup on $B(\mathfrak{h})$
A pointwise ultraweakly continuous semigroup $\mathcal{T}=\left(\mathcal{T}_{t}\right)_{t \geq 0}$ of normal, completely positive, contractions on $B(\mathfrak{h})$; it is called conservative if it is identity preserving.

Theorem (Lindblad, Gorini-Kossakowski-Sudarshan)

Quantum dynamical semigroups (QDS)

Setup 1/3

- \mathfrak{h} a fixed Hilbert space.

Definition: Quantum dynamical semigroup on $B(\mathfrak{h})$
A pointwise ultraweakly continuous semigroup $\mathcal{T}=\left(\mathcal{T}_{t}\right)_{t \geq 0}$ of normal, completely positive, contractions on $B(\mathfrak{h})$; it is called conservative if it is identity preserving.

Theorem (Lindblad, Gorini-Kossakowski-Sudarshan)

The norm-continuous QDS's are $\left(e^{t \mathcal{L}}\right)_{t \geq 0}$ where

$$
\mathcal{L}: x \mapsto x K+K^{*} x+L^{*}\left(x \otimes I_{\mathrm{k}}\right) L, \text { and }
$$

Quantum dynamical semigroups (QDS)

Setup 1/3

- \mathfrak{h} a fixed Hilbert space.

Definition: Quantum dynamical semigroup on $B(\mathfrak{h})$
A pointwise ultraweakly continuous semigroup $\mathcal{T}=\left(\mathcal{T}_{t}\right)_{t \geq 0}$ of normal, completely positive, contractions on $B(\mathfrak{h})$; it is called conservative if it is identity preserving.

Theorem (Lindblad, Gorini-Kossakowski-Sudarshan)

The norm-continuous QDS's are $\left(e^{t \mathcal{L}}\right)_{t \geq 0}$ where

$$
\begin{aligned}
& \mathcal{L}: x \mapsto x K+K^{*} x+L^{*}\left(x \otimes I_{\mathrm{k}}\right) L, \text { and } \\
& K+K^{*}+L^{*} L \leq 0,
\end{aligned}
$$

Quantum dynamical semigroups (QDS)

Setup 1/3

- \mathfrak{h} a fixed Hilbert space.

Definition: Quantum dynamical semigroup on $B(\mathfrak{h})$
A pointwise ultraweakly continuous semigroup $\mathcal{T}=\left(\mathcal{T}_{t}\right)_{t \geq 0}$ of normal, completely positive, contractions on $B(\mathfrak{h})$; it is called conservative if it is identity preserving.

Theorem (Lindblad, Gorini-Kossakowski-Sudarshan)

The norm-continuous QDS's are $\left(e^{t \mathcal{L}}\right)_{t \geq 0}$ where

$$
\begin{aligned}
& \mathcal{L}: x \mapsto x K+K^{*} x+L^{*}\left(x \otimes I_{\mathrm{k}}\right) L, \text { and } \\
& K+K^{*}+L^{*} L \leq 0,
\end{aligned}
$$

for a Hilbert space k and operators $K \in B(\mathfrak{h})$ and $L \in B(\mathfrak{h} ; \mathfrak{h} \otimes k)$.

Minimal QDS's

Minimal QDS's

Setup 2/3

- \mathfrak{h} and k, two fixed Hilbert spaces

Minimal QDS's

Setup 2/3

- \mathfrak{h} and k, two fixed Hilbert spaces
- $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathrm{k})$, that is
K is the generator of a contractive C_{0}-semigroup on \mathfrak{h};

Minimal QDS's

Setup 2/3

- \mathfrak{h} and k, two fixed Hilbert spaces
- $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathrm{k})$, that is
K is the generator of a contractive C_{0}-semigroup on \mathfrak{h}; L is an operator from \mathfrak{h} to $\mathfrak{h} \otimes k$, such that

Minimal QDS's

Setup 2/3

- \mathfrak{h} and k, two fixed Hilbert spaces
- $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathrm{k})$, that is
K is the generator of a contractive C_{0}-semigroup on \mathfrak{h};
L is an operator from \mathfrak{h} to $\mathfrak{h} \otimes k$, such that
$\operatorname{Dom} L \supset \operatorname{Dom} K ;\|L v\|^{2}+2 \operatorname{Re}\langle v, K v\rangle \leq 0, \quad v \in \operatorname{Dom} K$.

Minimal QDS's

Setup 2/3

- \mathfrak{h} and k, two fixed Hilbert spaces
- $(K, L) \in \mathfrak{X}(\mathfrak{h}, k)$, that is
K is the generator of a contractive C_{0}-semigroup on \mathfrak{h};
L is an operator from \mathfrak{h} to $\mathfrak{h} \otimes k$, such that
$\operatorname{Dom} L \supset \operatorname{Dom} K ;\|L v\|^{2}+2 \operatorname{Re}\langle v, K v\rangle \leq 0, \quad v \in \operatorname{Dom} K$.
- Associated quadratic forms: for $x \in B(\mathfrak{h})$,

$$
\mathcal{L}_{K, L}(x)[v]:=\langle v, x K v\rangle+\langle K v, x v\rangle+\left\langle L v, x \otimes I_{\mathrm{k}} L v\right\rangle, \quad v \in \operatorname{Dom} K .
$$

Minimal QDS's

Setup 2/3

- \mathfrak{h} and k, two fixed Hilbert spaces
- $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathrm{k})$, that is
K is the generator of a contractive C_{0}-semigroup on \mathfrak{h};
L is an operator from \mathfrak{h} to $\mathfrak{h} \otimes k$, such that
$\operatorname{Dom} L \supset \operatorname{Dom} K ;\|L v\|^{2}+2 \operatorname{Re}\langle v, K v\rangle \leq 0, \quad v \in \operatorname{Dom} K$.
- Associated quadratic forms: for $x \in B(\mathfrak{h})$,

$$
\mathcal{L}_{K, L}(x)[v]:=\langle v, x K v\rangle+\langle K v, x v\rangle+\left\langle L v, x \otimes I_{\mathrm{k}} L v\right\rangle, \quad v \in \operatorname{Dom} K .
$$

Definition (Minimal QDS \mathcal{T} for $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathrm{k}))$

Minimal QDS's

Setup 2/3

- \mathfrak{h} and k, two fixed Hilbert spaces
- $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathrm{k})$, that is
K is the generator of a contractive C_{0}-semigroup on \mathfrak{h};
L is an operator from \mathfrak{h} to $\mathfrak{h} \otimes k$, such that
$\operatorname{Dom} L \supset \operatorname{Dom} K ;\|L v\|^{2}+2 \operatorname{Re}\langle v, K v\rangle \leq 0, \quad v \in \operatorname{Dom} K$.
- Associated quadratic forms: for $x \in B(\mathfrak{h})$,

$$
\mathcal{L}_{K, L}(x)[v]:=\langle v, x K v\rangle+\langle K v, x v\rangle+\left\langle L v, x \otimes I_{\mathrm{k}} L v\right\rangle, \quad v \in \operatorname{Dom} K .
$$

Definition (Minimal QDS \mathcal{T} for $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathrm{k}))$

(i) For all $x \in B(\mathfrak{h})$ and $v \in \operatorname{Dom} K$,

Minimal QDS's

Setup 2/3

- \mathfrak{h} and k, two fixed Hilbert spaces
- $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathrm{k})$, that is
K is the generator of a contractive C_{0}-semigroup on \mathfrak{h};
L is an operator from \mathfrak{h} to $\mathfrak{h} \otimes k$, such that
$\operatorname{Dom} L \supset \operatorname{Dom} K ;\|L v\|^{2}+2 \operatorname{Re}\langle v, K v\rangle \leq 0, \quad v \in \operatorname{Dom} K$.
- Associated quadratic forms: for $x \in B(\mathfrak{h})$,

$$
\mathcal{L}_{K, L}(x)[v]:=\langle v, x K v\rangle+\langle K v, x v\rangle+\left\langle L v, x \otimes I_{\mathrm{k}} L v\right\rangle, \quad v \in \operatorname{Dom} K .
$$

Definition (Minimal QDS \mathcal{T} for $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathrm{k})$)

(i) For all $x \in B(\mathfrak{h})$ and $v \in \operatorname{Dom} K$,

$$
\begin{equation*}
\left\langle v, \mathcal{T}_{t}(x) v\right\rangle=\langle v, x v\rangle+\int_{0}^{t} d s \mathcal{L}_{K, L}\left(\mathcal{T}_{s}(x)[v]\right. \tag{1}
\end{equation*}
$$

Minimal QDS's

Setup 2/3

- \mathfrak{h} and k, two fixed Hilbert spaces
- $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathrm{k})$, that is
K is the generator of a contractive C_{0}-semigroup on \mathfrak{h};
L is an operator from \mathfrak{h} to $\mathfrak{h} \otimes k$, such that
$\operatorname{Dom} L \supset \operatorname{Dom} K ;\|L v\|^{2}+2 \operatorname{Re}\langle v, K v\rangle \leq 0, \quad v \in \operatorname{Dom} K$.
- Associated quadratic forms: for $x \in B(\mathfrak{h})$,

$$
\mathcal{L}_{K, L}(x)[v]:=\langle v, x K v\rangle+\langle K v, x v\rangle+\left\langle L v, x \otimes I_{\mathrm{k}} L v\right\rangle, \quad v \in \operatorname{Dom} K .
$$

Definition (Minimal QDS \mathcal{T} for $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathrm{k}))$

(i) For all $x \in B(\mathfrak{h})$ and $v \in \operatorname{Dom} K$,

$$
\begin{equation*}
\left\langle v, \mathcal{T}_{t}(x) v\right\rangle=\langle v, x v\rangle+\int_{0}^{t} d s \mathcal{L}_{K, L}\left(\mathcal{T}_{s}(x)[v]\right. \tag{1}
\end{equation*}
$$

(ii) For any other QDS \mathcal{T}^{\prime} satisfying (1),

Minimal QDS's

Setup 2/3

- \mathfrak{h} and k, two fixed Hilbert spaces
- $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathrm{k})$, that is
K is the generator of a contractive C_{0}-semigroup on \mathfrak{h};
L is an operator from \mathfrak{h} to $\mathfrak{h} \otimes k$, such that
$\operatorname{Dom} L \supset \operatorname{Dom} K ;\|L v\|^{2}+2 \operatorname{Re}\langle v, K v\rangle \leq 0, \quad v \in \operatorname{Dom} K$.
- Associated quadratic forms: for $x \in B(\mathfrak{h})$,

$$
\mathcal{L}_{K, L}(x)[v]:=\langle v, x K v\rangle+\langle K v, x v\rangle+\left\langle L v, x \otimes I_{\mathrm{k}} L v\right\rangle, \quad v \in \operatorname{Dom} K .
$$

Definition (Minimal QDS \mathcal{T} for $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathrm{k})$)

(i) For all $x \in B(\mathfrak{h})$ and $v \in \operatorname{Dom} K$,

$$
\begin{equation*}
\left\langle v, \mathcal{T}_{t}(x) v\right\rangle=\langle v, x v\rangle+\int_{0}^{t} d s \mathcal{L}_{K, L}\left(\mathcal{T}_{s}(x)[v]\right. \tag{1}
\end{equation*}
$$

(ii) For any other QDS \mathcal{T}^{\prime} satisfying (1),

$$
\mathcal{T}_{t}(x) \leq \mathcal{T}_{t}^{\prime}(x), \quad \text { for all } t \in \mathbb{R}_{+}, x \in B(\mathfrak{h})_{+}
$$

Existence of minimal QDS's

Existence of minimal QDS's

Theorem (Davies, after Kato and Feller)

Existence of minimal QDS's

Theorem (Davies, after Kato and Feller)

Let $(K, L) \in \mathfrak{X}(\mathfrak{h}, k)$.
Then there is a unique minimal QDS $\mathcal{T}^{K, L}$ associated to (K, L).

Existence of minimal QDS's

Theorem (Davies, after Kato and Feller)

Let $(K, L) \in \mathfrak{X}(\mathfrak{h}, k)$.
Then there is a unique minimal QDS $\mathcal{T}^{K, L}$ associated to (K, L). If $\mathcal{T}^{K, L}$ is conservative then $\mathcal{L}_{(K, L)}(1)=0$, in other words

$$
\|L v\|^{2}+2 \operatorname{Re}\langle v, K v\rangle=0, \quad v \in \operatorname{Dom} K .
$$

Setup

Setup

Setup 3/3

- \mathfrak{h} and k, two fixed Hilbert spaces

Setup

Setup 3/3

- \mathfrak{h} and k , two fixed Hilbert spaces
- $\mathcal{F}:=\Gamma\left(L^{2}\left(\mathbb{R}_{+} ; k\right)\right)$

Setup

Setup 3/3

- \mathfrak{h} and k, two fixed Hilbert spaces
- $\mathcal{F}:=\Gamma\left(L^{2}\left(\mathbb{R}_{+} ; k\right)\right)$
- $\varpi(f):=\exp \left(-\|f\|^{2} / 2\right) \varepsilon(f), f \in L^{2}\left(\mathbb{R}_{+} ; k\right)$

Setup 3/3

- \mathfrak{h} and k , two fixed Hilbert spaces
- $\mathcal{F}:=\Gamma\left(L^{2}\left(\mathbb{R}_{+} ; k\right)\right)$
- $\varpi(f):=\exp \left(-\|f\|^{2} / 2\right) \varepsilon(f), f \in L^{2}\left(\mathbb{R}_{+} ; k\right)$
- $\Delta:=\left[\begin{array}{lll}0_{\mathfrak{h}} & \\ & h_{\mathfrak{h}} \otimes \mathrm{k}\end{array}\right] \in B(\mathfrak{h} \oplus(\mathfrak{h} \otimes \mathrm{k})),\binom{z}{c} \mapsto\binom{0}{c}$

Setup 3/3

- \mathfrak{h} and k, two fixed Hilbert spaces
- $\mathcal{F}:=\Gamma\left(L^{2}\left(\mathbb{R}_{+} ; k\right)\right)$
- $\varpi(f):=\exp \left(-\|f\|^{2} / 2\right) \varepsilon(f), f \in L^{2}\left(\mathbb{R}_{+} ; k\right)$
- $\Delta:=\left[\begin{array}{ll}0_{\mathfrak{h}} & \\ & \mathfrak{l}_{\mathfrak{h} \otimes \mathrm{k}}\end{array}\right] \in B(\mathfrak{h} \oplus(\mathfrak{h} \otimes \mathrm{k})),\binom{z}{c} \mapsto\binom{0}{c}$

$$
\mathcal{F}=\mathcal{F}_{[0, r[} \otimes \mathcal{F}_{[r, t[} \otimes \mathcal{F}_{[t, \infty[}, \quad \text { where } \quad \mathcal{F}_{[r, t[}:=\Gamma\left(L^{2}([r, t[; k))\right.
$$

Quantum stochastic (QS) contraction cocycles on \mathfrak{h}

Quantum stochastic (QS) contraction cocycles on \mathfrak{h}

Definition

$V=\left(V_{t}\right)_{t \geq 0}$ contractions in $B(\mathfrak{h} \otimes \mathcal{F})$ satisfying

- $V_{s+t}=V_{s} \sigma_{s}\left(V_{t}\right)$ and $V_{0}=1$
- $V_{t} \in B\left(\mathfrak{h} \otimes \mathcal{F}_{[0, t[}\right) \otimes I_{[t, \infty[}$
- $t \mapsto V_{t}$ is strongly continuous

Quantum stochastic (QS) contraction cocycles on \mathfrak{h}

Definition

$V=\left(V_{t}\right)_{t \geq 0}$ contractions in $B(\mathfrak{h} \otimes \mathcal{F})$ satisfying

- $V_{s+t}=V_{s} \sigma_{s}\left(V_{t}\right)$ and $V_{0}=1$
- $V_{t} \in B\left(\mathfrak{h} \otimes \mathcal{F}_{[0, t[}\right) \otimes I_{[t, \infty[}$
- $t \mapsto V_{t}$ is strongly continuous
$\sigma_{s}\left(V_{t}\right) \in B(\mathfrak{h}) \otimes I_{[0, s[} \bar{\otimes} B\left(\mathcal{F}_{[s, s+t]}\right) \otimes I_{[s+t, \infty[}$

Quantum stochastic (QS) contraction cocycles on \mathfrak{h}

Definition

$V=\left(V_{t}\right)_{t \geq 0}$ contractions in $B(\mathfrak{h} \otimes \mathcal{F})$ satisfying

- $V_{s+t}=V_{s} \sigma_{s}\left(V_{t}\right)$ and $V_{0}=1$
- $V_{t} \in B\left(\mathfrak{h} \otimes \mathcal{F}_{[0, t[}\right) \otimes I_{[t, \infty[}$
- $t \mapsto V_{t}$ is strongly continuous

$$
\sigma_{s}\left(V_{t}\right) \in B(\mathfrak{h}) \otimes I_{[0, s[} \bar{\otimes} B\left(\mathcal{F}_{[s, s+t[}\right) \otimes I_{[s+t, \infty[}
$$

Notation: $\mathbb{Q S}_{c} \mathbb{C}(\mathfrak{h}, k)$

Quantum stochastic (QS) contraction cocycles on \mathfrak{h}

Definition

$V=\left(V_{t}\right)_{t \geq 0}$ contractions in $B(\mathfrak{h} \otimes \mathcal{F})$ satisfying

- $V_{s+t}=V_{s} \sigma_{s}\left(V_{t}\right)$ and $V_{0}=I$
- $V_{t} \in B\left(\mathfrak{h} \otimes \mathcal{F}_{[0, t[}\right) \otimes I_{[t, \infty[}$
- $t \mapsto V_{t}$ is strongly continuous
$\sigma_{s}\left(V_{t}\right) \in B(\mathfrak{h}) \otimes I_{[0, s[} \bar{\otimes} B\left(\mathcal{F}_{[s, s+t]}\right) \otimes I_{[s+t, \infty[}$
Notation: $\mathbb{Q S}_{c} \mathbb{C}(\mathfrak{h}, k)$

Expectation semigroup of V

$$
Q^{0,0}:=\left(\mathbb{E}_{0}\left[V_{t}\right]\right)_{t \geq 0} \quad \text { where } \mathbb{E}_{s}:=\operatorname{id}_{B\left(\mathfrak{h} \otimes \mathcal{F}_{[0, s \mid}\right)} \bar{\otimes} \omega_{\varepsilon\left(0_{[s, \infty \mid}\right)}
$$

Quantum stochastic (QS) contraction cocycles on \mathfrak{h}

Definition

$V=\left(V_{t}\right)_{t \geq 0}$ contractions in $B(\mathfrak{h} \otimes \mathcal{F})$ satisfying

- $V_{s+t}=V_{s} \sigma_{s}\left(V_{t}\right)$ and $V_{0}=1$
- $V_{t} \in B\left(\mathfrak{h} \otimes \mathcal{F}_{[0, t[}\right) \otimes I_{[t, \infty[}$
- $t \mapsto V_{t}$ is strongly continuous
$\sigma_{s}\left(V_{t}\right) \in B(\mathfrak{h}) \otimes I_{[0, s[} \bar{\otimes} B\left(\mathcal{F}_{[s, s+t]}\right) \otimes I_{[s+t, \infty[}$
Notation: $\mathbb{Q S}_{c} \mathbb{C}(\mathfrak{h}, k)$

Expectation semigroup of V

$$
Q^{0,0}:=\left(\mathbb{E}_{0}\left[V_{t}\right]\right)_{t \geq 0} \quad \text { where } \mathbb{E}_{s}:=\operatorname{id}_{B\left(\mathfrak{h} \otimes \mathcal{F}_{[0, s]}\right)} \bar{\otimes} \omega_{\varepsilon\left(0_{[s, \infty \mid}\right)} .
$$

$\mathbb{E}_{0}=\mathbb{E}_{0} \circ \mathbb{E}_{s}$ and $\mathbb{E}_{s} \circ \sigma_{s}=\mathbb{E}_{0}$.

Examples

Examples

Example 0: $V:=\left(P_{t} \otimes I_{\mathcal{F}}\right)_{t \geq 0}$

Examples

Example 0: $V:=\left(P_{t} \otimes I_{\mathcal{F}}\right)_{t \geq 0}$
where $P=\left(P_{t}\right)_{t \geq 0}$ is a contractive C_{0}-semigroup on \mathfrak{h}.

Examples

Example 0: $V:=\left(P_{t} \otimes I_{\mathcal{F}}\right)_{t \geq 0}$
where $P=\left(P_{t}\right)_{t \geq 0}$ is a contractive C_{0}-semigroup on \mathfrak{h}.

Example 1: $V:=\left(e^{i H \otimes M_{B_{t}}}\right)_{t \geq 0}$

Examples

Example 0: $V:=\left(P_{t} \otimes I_{\mathcal{F}}\right)_{t \geq 0}$
where $P=\left(P_{t}\right)_{t \geq 0}$ is a contractive C_{0}-semigroup on \mathfrak{h}.

Example 1: $V:=\left(e^{i H \otimes M_{B_{t}}}\right)_{t \geq 0}$
where H is a selfadjoint operator on \mathfrak{h},

Examples

Example 0: $V:=\left(P_{t} \otimes I_{\mathcal{F}}\right)_{t \geq 0}$
where $P=\left(P_{t}\right)_{t \geq 0}$ is a contractive C_{0}-semigroup on \mathfrak{h}.

Example 1: $V:=\left(e^{i H \otimes M_{B_{t}}}\right)_{t \geq 0}$
where H is a selfadjoint operator on \mathfrak{h}, $B=\left(B_{t}\right)_{t \geq 0}$ is a Brownian motion, and

Examples

Example 0：$V:=\left(P_{t} \otimes I_{\mathcal{F}}\right)_{t \geq 0}$
where $P=\left(P_{t}\right)_{t \geq 0}$ is a contractive C_{0}－semigroup on \mathfrak{h} ．

Example 1：$V:=\left(e^{i H \otimes M_{B_{t}}}\right)_{t \geq 0}$
where H is a selfadjoint operator on \mathfrak{h} ， $B=\left(B_{t}\right)_{t \geq 0}$ is a Brownian motion，and $L^{2}(\mathcal{W}) \cong \mathcal{F}$（Wiener－Segal－Itô isomorphism）．

Examples

Example 0：$V:=\left(P_{t} \otimes I_{\mathcal{F}}\right)_{t \geq 0}$
where $P=\left(P_{t}\right)_{t \geq 0}$ is a contractive C_{0}－semigroup on \mathfrak{h} ．

Example 1：$V:=\left(e^{i H \otimes M_{B_{t}}}\right)_{t \geq 0}$
where H is a selfadjoint operator on \mathfrak{h} ，
$B=\left(B_{t}\right)_{t \geq 0}$ is a Brownian motion，and $L^{2}(\mathcal{W}) \cong \mathcal{F}$（Wiener－Segal－Itô isomorphism）．

Example 2：Weyl cocycles，$W^{c}:=\left(I_{\mathfrak{h}} \otimes W\left(c_{[0, t[}\right)\right)_{t \geq 0}(c \in k)$

Examples

Example 0：$V:=\left(P_{t} \otimes I_{\mathcal{F}}\right)_{t \geq 0}$
where $P=\left(P_{t}\right)_{t \geq 0}$ is a contractive C_{0}－semigroup on \mathfrak{h} ．

Example 1：$V:=\left(e^{i H \otimes M_{B_{t}}}\right)_{t \geq 0}$
where H is a selfadjoint operator on \mathfrak{h} ， $B=\left(B_{t}\right)_{t \geq 0}$ is a Brownian motion，and $L^{2}(\mathcal{W}) \cong \mathcal{F}$（Wiener－Segal－Itô isomorphism）．

Example 2：Weyl cocycles，$W^{c}:=\left(I_{\mathfrak{h}} \otimes W\left(c_{[0, t}\right)\right)_{t \geq 0}(c \in k)$
where $W(f)$ is the（unitary）Fock－Weyl operator

Examples

Example 0: $V:=\left(P_{t} \otimes I_{\mathcal{F}}\right)_{t \geq 0}$
where $P=\left(P_{t}\right)_{t \geq 0}$ is a contractive C_{0}-semigroup on \mathfrak{h}.

Example 1: $V:=\left(e^{i H \otimes M_{B_{t}}}\right)_{t \geq 0}$
where H is a selfadjoint operator on \mathfrak{h},
$B=\left(B_{t}\right)_{t \geq 0}$ is a Brownian motion, and $L^{2}(\mathcal{W}) \cong \mathcal{F}$ (Wiener-Segal-Itô isomorphism).

Example 2: Weyl cocycles, $W^{c}:=\left(I_{\mathfrak{h}} \otimes W\left(c_{[0, t[}\right)\right)_{t \geq 0}(c \in \mathrm{k})$
where $W(f)$ is the (unitary) Fock-Weyl operator determined by

$$
W(f) \varpi(g)=e^{-i \operatorname{Im}\langle f, g\rangle} \varpi(f+g), \quad g \in L^{2}\left(\mathbb{R}_{+} ; k\right)
$$

Examples

Example 0: $V:=\left(P_{t} \otimes I_{\mathcal{F}}\right)_{t \geq 0}$
where $P=\left(P_{t}\right)_{t \geq 0}$ is a contractive C_{0}-semigroup on \mathfrak{h}.

Example 1: $V:=\left(e^{i H \otimes M_{B_{t}}}\right)_{t \geq 0}$
where H is a selfadjoint operator on \mathfrak{h},
$B=\left(B_{t}\right)_{t \geq 0}$ is a Brownian motion, and
$L^{2}(\mathcal{W}) \cong \mathcal{F}$ (Wiener-Segal-Itô isomorphism).

Example 2: Weyl cocycles, $W^{c}:=\left(I_{\mathfrak{h}} \otimes W\left(c_{[0, t[}\right)\right)_{t \geq 0}(c \in \mathrm{k})$
where $W(f)$ is the (unitary) Fock-Weyl operator determined by

$$
W(f) \varpi(g)=e^{-i \operatorname{lm}\langle f, g\rangle} \varpi(f+g), \quad g \in L^{2}\left(\mathbb{R}_{+} ; k\right)
$$

$W\left(c_{[0, r+t[}\right)=W\left(c_{[0, r[}\right) W\left(c_{[r, r+t[}\right)$

Examples

Example 0: $V:=\left(P_{t} \otimes I_{\mathcal{F}}\right)_{t \geq 0}$
where $P=\left(P_{t}\right)_{t \geq 0}$ is a contractive C_{0}-semigroup on \mathfrak{h}.

Example 1: $V:=\left(e^{i H \otimes M_{B_{t}}}\right)_{t \geq 0}$
where H is a selfadjoint operator on \mathfrak{h},
$B=\left(B_{t}\right)_{t \geq 0}$ is a Brownian motion, and
$L^{2}(\mathcal{W}) \cong \mathcal{F}$ (Wiener-Segal-Itô isomorphism).

Example 2: Weyl cocycles, $W^{c}:=\left(I_{\mathfrak{h}} \otimes W\left(c_{[0, t}\right)\right)_{t \geq 0}(c \in k)$
where $W(f)$ is the (unitary) Fock-Weyl operator determined by

$$
W(f) \varpi(g)=e^{-i \operatorname{lm}\langle f, g\rangle} \varpi(f+g), \quad g \in L^{2}\left(\mathbb{R}_{+} ; k\right)
$$

$$
W\left(c_{[0, r+t[}\right)=W\left(c_{[0, r[}\right) W\left(c_{[r, r+t[}\right) \& W\left(c_{[r, r+t[}\right)=\sigma_{r}\left(W\left(c_{[0, t[}\right)\right) .
$$

Constructions: Associated cocycles and dual cocycles

Constructions: Associated cocycles and dual cocycles

Definition (Associated cocycles)

Constructions: Associated cocycles and dual cocycles

Definition (Associated cocycles)

For $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$,

$$
V^{c, d}:=\left(\left(W_{t}^{c}\right)^{*} V_{t} W_{t}^{d}\right)_{t \geq 0}, \quad c, d \in \mathrm{k} .
$$

Constructions: Associated cocycles and dual cocycles

Definition (Associated cocycles)

For $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$,

$$
V^{c, d}:=\left(\left(W_{t}^{c}\right)^{*} V_{t} W_{t}^{d}\right)_{t \geq 0}, \quad c, d \in \mathrm{k} .
$$

$\sigma_{r}\left(V_{t}\right) \smile I_{\mathfrak{h}} \otimes W\left(e_{[0, r[}\right)$ in $B(\mathfrak{h}) \otimes \mathcal{F}_{[0, r[} \otimes \mathcal{F}_{[r, \infty[}$.

Constructions: Associated cocycles and dual cocycles

Definition (Associated cocycles)

For $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$,

$$
V^{c, d}:=\left(\left(W_{t}^{c}\right)^{*} V_{t} W_{t}^{d}\right)_{t \geq 0}, \quad c, d \in \mathrm{k}
$$

$\sigma_{r}\left(V_{t}\right) \smile I_{\mathfrak{h}} \otimes W\left(e_{[0, r[}\right)$ in $B(\mathfrak{h}) \otimes \mathcal{F}_{[0, r[} \otimes \mathcal{F}_{[r, \infty[}$.

Definition (Dual cocycle)

Constructions: Associated cocycles and dual cocycles

Definition (Associated cocycles)

For $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$,

$$
V^{c, d}:=\left(\left(W_{t}^{c}\right)^{*} V_{t} W_{t}^{d}\right)_{t \geq 0}, \quad c, d \in \mathrm{k} .
$$

$\sigma_{r}\left(V_{t}\right) \smile I_{\mathfrak{h}} \otimes W\left(e_{[0, r[}\right)$ in $B(\mathfrak{h}) \otimes \mathcal{F}_{[0, r[} \otimes \mathcal{F}_{[r, \infty[}$.

Definition (Dual cocycle)

For $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, \mathrm{k})$,

$$
\widetilde{V}:=\left(\left(I_{\mathfrak{h}} \otimes R_{t}\right) V_{t}^{*}\left(I_{\mathfrak{h}} \otimes R_{t}\right)\right)_{t \geq 0}
$$

Constructions: Associated cocycles and dual cocycles

Definition (Associated cocycles)

For $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$,

$$
V^{c, d}:=\left(\left(W_{t}^{c}\right)^{*} V_{t} W_{t}^{d}\right)_{t \geq 0}, \quad c, d \in \mathrm{k}
$$

$\sigma_{r}\left(V_{t}\right) \smile I_{\mathfrak{h}} \otimes W\left(e_{[0, r[}\right)$ in $B(\mathfrak{h}) \otimes \mathcal{F}_{[0, r[} \otimes \mathcal{F}_{[r, \infty[}$.

Definition (Dual cocycle)

For $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, \mathrm{k})$,

$$
\widetilde{V}:=\left(\left(I_{\mathfrak{h}} \otimes R_{t}\right) V_{t}^{*}\left(I_{\mathfrak{h}} \otimes R_{t}\right)\right)_{t \geq 0}
$$

where R_{t} is the (unitary) time-reversal operator

Constructions：Associated cocycles and dual cocycles

Definition（Associated cocycles）

For $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ ，

$$
V^{c, d}:=\left(\left(W_{t}^{c}\right)^{*} V_{t} W_{t}^{d}\right)_{t \geq 0}, \quad c, d \in \mathrm{k}
$$

$\sigma_{r}\left(V_{t}\right) \smile I_{\mathfrak{h}} \otimes W\left(e_{[0, r[}\right)$ in $B(\mathfrak{h}) \otimes \mathcal{F}_{[0, r[} \otimes \mathcal{F}_{[r, \infty[}$.

Definition（Dual cocycle）

For $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, \mathrm{k})$ ，

$$
\widetilde{V}:=\left(\left(I_{\mathfrak{h}} \otimes R_{t}\right) V_{t}^{*}\left(I_{\mathfrak{h}} \otimes R_{t}\right)\right)_{t \geq 0}
$$

where R_{t} is the（unitary）time－reversal operator determined by

$$
R_{t} \varepsilon(f):=\varepsilon\left(r_{t} f\right), \quad f \in L^{2}\left(\mathbb{R}_{+} ; k\right)
$$

Constructions: Associated cocycles and dual cocycles

Definition (Associated cocycles)

For $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$,

$$
V^{c, d}:=\left(\left(W_{t}^{c}\right)^{*} V_{t} W_{t}^{d}\right)_{t \geq 0}, \quad c, d \in \mathrm{k}
$$

$\sigma_{r}\left(V_{t}\right) \smile I_{\mathfrak{h}} \otimes W\left(e_{[0, r[}\right)$ in $B(\mathfrak{h}) \otimes \mathcal{F}_{[0, r[} \otimes \mathcal{F}_{[r, \infty[}$.

Definition (Dual cocycle)

For $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, \mathrm{k})$,

$$
\widetilde{V}:=\left(\left(I_{\mathfrak{h}} \otimes R_{t}\right) V_{t}^{*}\left(I_{\mathfrak{h}} \otimes R_{t}\right)\right)_{t \geq 0}
$$

where R_{t} is the (unitary) time-reversal operator determined by

$$
R_{t} \varepsilon(f):=\varepsilon\left(r_{t} f\right), \quad f \in L^{2}\left(\mathbb{R}_{+} ; k\right)
$$

with $\left(r_{t} f\right)(s):=f(t-s)$ for $s \in[0, t[$ and $:=f(s)$ for $s \in[t, \infty[$.

Associated semigroups

Associated semigroups

Definition (Associated semigroups)

For $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$,

$$
\begin{aligned}
Q^{c, d} & :=\left(\left(\mathrm{id}_{B(\mathfrak{h})} \bar{\otimes} \omega_{\varpi\left(c_{[0, t \mid}\right), \varpi\left(c_{0, t]}\right)}\right)\left(V_{t}\right)\right)_{t \geq 0} \\
& =\left(\mathbb{E}_{0}\left[V_{t}^{c, d}\right]\right)_{t \geq 0}, \quad c, d \in \mathrm{k} .
\end{aligned}
$$

Associated operators and domains

Associated operators and domains

Isometric embeddings: $\mathfrak{h} \otimes \mathfrak{k} \rightarrow \mathfrak{h} \otimes \mathfrak{k} \otimes L^{2}\left(\mathbb{R}_{+}\right) \subset \mathfrak{h} \otimes \mathcal{F}$

Associated operators and domains

Isometric embeddings: $\mathfrak{h} \otimes \mathrm{k} \rightarrow \mathfrak{h} \otimes \mathrm{k} \otimes L^{2}\left(\mathbb{R}_{+}\right) \subset \mathfrak{h} \otimes \mathcal{F}$

$$
E_{t}: \xi \mapsto t^{-1 / 2} \xi \otimes 1_{[0, t[} \quad(t>0) .
$$

Associated operators and domains

Isometric embeddings： $\mathfrak{h} \otimes \mathfrak{k} \rightarrow \mathfrak{h} \otimes \mathfrak{k} \otimes L^{2}\left(\mathbb{R}_{+}\right) \subset \mathfrak{h} \otimes \mathcal{F}$

$$
E_{t}: \xi \mapsto t^{-1 / 2} \xi \otimes 1_{[0, t[} \quad(t>0) .
$$

Associated operators and domains．Let $V \in \mathbb{Q} \mathbb{S}_{\mathcal{C}} \mathbb{C}(\mathfrak{h}, \mathrm{k})$ ．

Associated operators and domains

Isometric embeddings： $\mathfrak{h} \otimes \mathfrak{k} \rightarrow \mathfrak{h} \otimes \mathfrak{k} \otimes L^{2}\left(\mathbb{R}_{+}\right) \subset \mathfrak{h} \otimes \mathcal{F}$

$$
E_{t}: \xi \mapsto t^{-1 / 2} \xi \otimes 1_{[0, t[} \quad(t>0) .
$$

Associated operators and domains．Let $V \in \mathbb{Q} \mathbb{S}_{\mathcal{C}} \mathbb{C}(\mathfrak{h}, \mathrm{k})$ ．
－$K_{c, d}^{V}:=$ the generator of the (c, d)－associated semigroup of V

Associated operators and domains

Isometric embeddings: $\mathfrak{h} \otimes \mathfrak{k} \rightarrow \mathfrak{h} \otimes \mathfrak{k} \otimes L^{2}\left(\mathbb{R}_{+}\right) \subset \mathfrak{h} \otimes \mathcal{F}$

$$
E_{t}: \xi \mapsto t^{-1 / 2} \xi \otimes 1_{[0, t[} \quad(t>0) .
$$

Associated operators and domains. Let $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, \mathrm{k})$.

- $K_{c, d}^{V}:=$ the generator of the (c, d)-associated semigroup of V
- $L_{d}^{V}(t):=t^{-1 / 2}\left(E_{t}\right)^{*} V_{t}\left(I_{\mathfrak{h}} \otimes\left|\varepsilon\left(d_{[0, t} \mid\right)\right\rangle\right)$

Associated operators and domains

Isometric embeddings: $\mathfrak{h} \otimes \mathfrak{k} \rightarrow \mathfrak{h} \otimes \mathfrak{k} \otimes L^{2}\left(\mathbb{R}_{+}\right) \subset \mathfrak{h} \otimes \mathcal{F}$

$$
E_{t}: \xi \mapsto t^{-1 / 2} \xi \otimes 1_{[0, t[} \quad(t>0) .
$$

Associated operators and domains. Let $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, \mathrm{k})$.

- $K_{c, d}^{V}:=$ the generator of the (c, d)-associated semigroup of V
- $L_{d}^{V}(t):=t^{-1 / 2}\left(E_{t}\right)^{*} V_{t}\left(I_{\mathfrak{h}} \otimes\left|\varepsilon\left(d_{[0, t}\right)\right\rangle\right) \in B(\mathfrak{h} ; \mathfrak{h} \otimes \mathrm{k})$

Associated operators and domains

Isometric embeddings: $\mathfrak{h} \otimes \mathfrak{k} \rightarrow \mathfrak{h} \otimes \mathfrak{k} \otimes L^{2}\left(\mathbb{R}_{+}\right) \subset \mathfrak{h} \otimes \mathcal{F}$

$$
E_{t}: \xi \mapsto t^{-1 / 2} \xi \otimes 1_{[0, t[} \quad(t>0) .
$$

Associated operators and domains. Let $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, \mathrm{k})$.

- $K_{c, d}^{V}:=$ the generator of the (c, d)-associated semigroup of V
- $L_{d}^{V}(t):=t^{-1 / 2}\left(E_{t}\right)^{*} V_{t}\left(I_{\mathfrak{h}} \otimes\left|\varepsilon\left(d_{[0, t \mid}\right)\right\rangle\right) \in B(\mathfrak{h} ; \mathfrak{h} \otimes \mathrm{k})$
- $C^{V}(t):=I_{\mathfrak{h} \otimes \mathcal{F}}+\left(E_{t}\right)^{*}\left(V_{t}-I_{\mathfrak{h} \otimes \mathcal{F}}\right) E_{t}$

Associated operators and domains

Isometric embeddings: $\mathfrak{h} \otimes \mathfrak{k} \rightarrow \mathfrak{h} \otimes \mathfrak{k} \otimes L^{2}\left(\mathbb{R}_{+}\right) \subset \mathfrak{h} \otimes \mathcal{F}$

$$
E_{t}: \xi \mapsto t^{-1 / 2} \xi \otimes 1_{[0, t[} \quad(t>0) .
$$

Associated operators and domains. Let $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, \mathrm{k})$.

- $K_{c, d}^{V}:=$ the generator of the (c, d)-associated semigroup of V
- $L_{d}^{V}(t):=t^{-1 / 2}\left(E_{t}\right)^{*} V_{t}\left(I_{\mathfrak{h}} \otimes\left|\varepsilon\left(d_{[0, t \mid}\right)\right\rangle\right) \in B(\mathfrak{h} ; \mathfrak{h} \otimes \mathrm{k})$
- $C^{V}(t):=I_{\text {h } \otimes \mathcal{F}}+\left(E_{t}\right)^{*}\left(V_{t}-I_{\text {h }} \otimes \mathcal{F}\right) E_{t}=\left(E_{t}\right)^{*} V_{t} E_{t}$

Associated operators and domains

Isometric embeddings: $\mathfrak{h} \otimes \mathfrak{k} \rightarrow \mathfrak{h} \otimes \mathfrak{k} \otimes L^{2}\left(\mathbb{R}_{+}\right) \subset \mathfrak{h} \otimes \mathcal{F}$

$$
E_{t}: \xi \mapsto t^{-1 / 2} \xi \otimes 1_{[0, t[} \quad(t>0) .
$$

Associated operators and domains. Let $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, \mathrm{k})$.

- $K_{c, d}^{V}:=$ the generator of the (c, d)-associated semigroup of V
- $L_{d}^{V}(t):=t^{-1 / 2}\left(E_{t}\right)^{*} V_{t}\left(I_{\mathfrak{h}} \otimes\left|\varepsilon\left(d_{[0, t}\right)\right\rangle\right) \in B(\mathfrak{h} ; \mathfrak{h} \otimes \mathrm{k})$
- $C^{V}(t):=I_{\mathfrak{h} \otimes \mathcal{F}}+\left(E_{t}\right)^{*}\left(V_{t}-I_{\mathfrak{h} \otimes \mathcal{F}}\right) E_{t}=\left(E_{t}\right)^{*} V_{t} E_{t} \in B(\mathfrak{h} \otimes \mathrm{k})$.

Associated operators and domains

Isometric embeddings: $\mathfrak{h} \otimes \mathrm{k} \rightarrow \mathfrak{h} \otimes \mathrm{k} \otimes \mathrm{L}^{2}\left(\mathbb{R}_{+}\right) \subset \mathfrak{h} \otimes \mathcal{F}$

$$
E_{t}: \xi \mapsto t^{-1 / 2} \xi \otimes 1_{[0, t[} \quad(t>0) .
$$

Associated operators and domains. Let $V \in \mathbb{Q} S_{c} \mathbb{C}(\mathfrak{h}, \mathrm{k})$.

- $K_{c, d}^{V}:=$ the generator of the (c, d)-associated semigroup of V
- $L_{d}^{V}(t):=t^{-1 / 2}\left(E_{t}\right)^{*} V_{t}\left(I_{\mathfrak{h}} \otimes\left|\varepsilon\left(d_{[0, t}\right)\right\rangle\right) \in B(\mathfrak{h} ; \mathfrak{h} \otimes \mathrm{k})$
- $C^{V}(t):=I_{\mathfrak{h} \otimes \mathcal{F}}+\left(E_{t}\right)^{*}\left(V_{t}-I_{\mathfrak{h} \otimes \mathcal{F}}\right) E_{t}=\left(E_{t}\right)^{*} V_{t} E_{t} \in B(\mathfrak{h} \otimes \mathbf{k})$.

Properties. Set $\mathcal{D}_{d}^{V}:=\operatorname{Dom} K_{d, d}^{V}$

Associated operators and domains

Isometric embeddings: $\mathfrak{h} \otimes \mathrm{k} \rightarrow \mathfrak{h} \otimes \mathrm{k} \otimes \mathrm{L}^{2}\left(\mathbb{R}_{+}\right) \subset \mathfrak{h} \otimes \mathcal{F}$

$$
E_{t}: \xi \mapsto t^{-1 / 2} \xi \otimes 1_{[0, t[} \quad(t>0) .
$$

Associated operators and domains. Let $V \in \mathbb{Q} S_{c} \mathbb{C}(\mathfrak{h}, \mathrm{k})$.

- $K_{c, d}^{V}:=$ the generator of the (c, d)-associated semigroup of V
- $L_{d}^{V}(t):=t^{-1 / 2}\left(E_{t}\right)^{*} V_{t}\left(I_{\mathfrak{h}} \otimes\left|\varepsilon\left(d_{[0, t}\right)\right\rangle\right) \in B(\mathfrak{h} ; \mathfrak{h} \otimes \mathrm{k})$
- $C^{V}(t):=I_{\mathfrak{h} \otimes \mathcal{F}}+\left(E_{t}\right)^{*}\left(V_{t}-I_{\mathfrak{h} \otimes \mathcal{F}}\right) E_{t}=\left(E_{t}\right)^{*} V_{t} E_{t} \in B(\mathfrak{h} \otimes \mathbf{k})$.

Properties. Set $\mathcal{D}_{d}^{V}:=\operatorname{Dom} K_{d, d}^{V}$

- $\left(C^{V}(t)\right)_{t>0}$ is a family of contractions in $B(\mathfrak{h} \otimes \mathfrak{k})$.

Associated operators and domains

Isometric embeddings: $\mathfrak{h} \otimes \mathrm{k} \rightarrow \mathfrak{h} \otimes \mathrm{k} \otimes \mathrm{L}^{2}\left(\mathbb{R}_{+}\right) \subset \mathfrak{h} \otimes \mathcal{F}$

$$
E_{t}: \xi \mapsto t^{-1 / 2} \xi \otimes 1_{[0, t[} \quad(t>0) .
$$

Associated operators and domains. Let $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, \mathrm{k})$.

- $K_{c, d}^{V}:=$ the generator of the (c, d)-associated semigroup of V
- $L_{d}^{V}(t):=t^{-1 / 2}\left(E_{t}\right)^{*} V_{t}\left(I_{\mathfrak{h}} \otimes\left|\varepsilon\left(d_{[0, t}\right)\right\rangle\right) \in B(\mathfrak{h} ; \mathfrak{h} \otimes \mathrm{k})$
- $C^{V}(t):=I_{\mathfrak{h} \otimes \mathcal{F}}+\left(E_{t}\right)^{*}\left(V_{t}-I_{\mathfrak{h} \otimes \mathcal{F}}\right) E_{t}=\left(E_{t}\right)^{*} V_{t} E_{t} \in B(\mathfrak{h} \otimes \mathbf{k})$.

Properties. Set $\mathcal{D}_{d}^{V}:=\operatorname{Dom} K_{d, d}^{V}$

- $\left(C^{V}(t)\right)_{t>0}$ is a family of contractions in $B(\mathfrak{h} \otimes \mathrm{k})$.
- Dom $K_{c, d}^{V}=\mathcal{D}_{d}^{V}$ for all $c, d \in k$.

Associated operators and domains

Isometric embeddings: $\mathfrak{h} \otimes \mathrm{k} \rightarrow \mathfrak{h} \otimes \mathrm{k} \otimes \mathrm{L}^{2}\left(\mathbb{R}_{+}\right) \subset \mathfrak{h} \otimes \mathcal{F}$

$$
E_{t}: \xi \mapsto t^{-1 / 2} \xi \otimes 1_{[0, t[} \quad(t>0) .
$$

Associated operators and domains. Let $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, \mathrm{k})$.

- $K_{c, d}^{V}:=$ the generator of the (c, d)-associated semigroup of V
- $L_{d}^{V}(t):=t^{-1 / 2}\left(E_{t}\right)^{*} V_{t}\left(I_{\mathfrak{h}} \otimes\left|\varepsilon\left(d_{[0, t}\right)\right\rangle\right) \in B(\mathfrak{h} ; \mathfrak{h} \otimes \mathrm{k})$
- $C^{V}(t):=I_{\mathfrak{h} \otimes \mathcal{F}}+\left(E_{t}\right)^{*}\left(V_{t}-I_{\mathfrak{h} \otimes \mathcal{F}}\right) E_{t}=\left(E_{t}\right)^{*} V_{t} E_{t} \in B(\mathfrak{h} \otimes \mathbf{k})$.

Properties. Set $\mathcal{D}_{d}^{V}:=\operatorname{Dom} K_{d, d}^{V}$

- $\left(C^{V}(t)\right)_{t>0}$ is a family of contractions in $B(\mathfrak{h} \otimes \mathfrak{k})$.
- Dom $K_{c, d}^{V}=\mathcal{D}_{d}^{V}$ for all $c, d \in \mathrm{k}$.
- For all $v \in \mathcal{D}_{d}^{v}, L_{d}^{v} v:=\lim _{t \rightarrow 0^{+}} L_{d}^{v}(t) v$ exists and $\left(K_{c, d}^{V}, L_{d}^{V}\right) \in \mathfrak{X}(\mathfrak{h}, \mathrm{k}):$

Associated operators and domains

Isometric embeddings: $\mathfrak{h} \otimes \mathrm{k} \rightarrow \mathfrak{h} \otimes \mathrm{k} \otimes \mathrm{L}^{2}\left(\mathbb{R}_{+}\right) \subset \mathfrak{h} \otimes \mathcal{F}$

$$
E_{t}: \xi \mapsto t^{-1 / 2} \xi \otimes 1_{[0, t[} \quad(t>0) .
$$

Associated operators and domains. Let $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, \mathrm{k})$.

- $K_{c, d}^{V}:=$ the generator of the (c, d)-associated semigroup of V
- $L_{d}^{V}(t):=t^{-1 / 2}\left(E_{t}\right)^{*} V_{t}\left(I_{\mathfrak{h}} \otimes\left|\varepsilon\left(d_{[0, t}\right)\right\rangle\right) \in B(\mathfrak{h} ; \mathfrak{h} \otimes \mathrm{k})$
- $C^{V}(t):=I_{\mathfrak{h} \otimes \mathcal{F}}+\left(E_{t}\right)^{*}\left(V_{t}-I_{\mathfrak{h} \otimes \mathcal{F}}\right) E_{t}=\left(E_{t}\right)^{*} V_{t} E_{t} \in B(\mathfrak{h} \otimes \mathbf{k})$.

Properties. Set $\mathcal{D}_{d}^{V}:=\operatorname{Dom} K_{d, d}^{V}$

- $\left(C^{V}(t)\right)_{t>0}$ is a family of contractions in $B(\mathfrak{h} \otimes \mathfrak{k})$.
- Dom $K_{c, d}^{V}=\mathcal{D}_{d}^{V}$ for all $c, d \in \mathrm{k}$.
- For all $v \in \mathcal{D}_{d}^{v}, L_{d}^{v} v:=\lim _{t \rightarrow 0^{+}} L_{d}^{v}(t) v$ exists and $\left(K_{c, d}^{V}, L_{d}^{V}\right) \in \mathfrak{X}(\mathfrak{h}, \mathrm{k}):$

$$
\left\|L_{d}^{V} v\right\|^{2}+2 \operatorname{Re}\left\langle v, K_{c, d}^{v} v\right\rangle \leq 0 .
$$

Nonsingularity

Nonsingularity

Definition
$V \in \mathbb{Q} S_{c} \mathbb{C}(\mathfrak{h}, k)$ is nonsingular if

$$
\left(C^{V}(t)\right)_{t>0} \text { converges as } t \rightarrow 0^{+}(\text {W.O.T. })
$$

Nonsingularity

Definition
$V \in \mathbb{Q} S_{c} \mathbb{C}(\mathfrak{h}, k)$ is nonsingular if

$$
\left.\left(C^{V}(t)\right)_{t>0} \text { converges as } t \rightarrow 0^{+} \text {(W.O.T. }\right)
$$

Write C^{V} for the limit.

Nonsingularity

Definition

$V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ is nonsingular if

$$
\left.\left(C^{V}(t)\right)_{t>0} \text { converges as } t \rightarrow 0^{+} \text {(W.O.T. }\right)
$$

Write C^{V} for the limit.

Remark

If $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ satisfies the QSDE

$$
d V_{t}=V_{t} d \Lambda_{F}(t)
$$

Nonsingularity

Definition

$V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ is nonsingular if

$$
\left.\left(C^{V}(t)\right)_{t>0} \text { converges as } t \rightarrow 0^{+} \text {(W.O.T. }\right)
$$

Write C^{V} for the limit.

Remark

If $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ satisfies the QSDE

$$
d V_{t}=V_{t} d \Lambda_{F}(t)=V_{t}\left(K d t+L d A_{t}^{*}+M d A_{t}+(C-I) d N_{t}\right)
$$

for an operator $F=\left[\begin{array}{cc}K & M \\ L & C-I\end{array}\right]$

Nonsingularity

Definition

$V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ is nonsingular if

$$
\left.\left(C^{V}(t)\right)_{t>0} \text { converges as } t \rightarrow 0^{+} \text {(W.O.T. }\right)
$$

Write C^{V} for the limit.

Remark

If $V \in \mathbb{Q} S_{c} \mathbb{C}(\mathfrak{h}, k)$ satisfies the QSDE

$$
d V_{t}=V_{t} d \Lambda_{F}(t)=V_{t}\left(K d t+L d A_{t}^{*}+M d A_{t}+(C-I) d N_{t}\right)
$$

for an operator $F=\left[\begin{array}{cc}K & M \\ L & C-I\end{array}\right]$ (with dense domain of the form $\mathcal{D} \oplus(\mathcal{D} \otimes \mathrm{D}))$,

Nonsingularity

Definition

$V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ is nonsingular if

$$
\left(C^{V}(t)\right)_{t>0} \text { converges as } t \rightarrow 0^{+}(\text {W.O.T. })
$$

Write C^{V} for the limit.

Remark

If $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ satisfies the QSDE

$$
d V_{t}=V_{t} d \Lambda_{F}(t)=V_{t}\left(K d t+L d A_{t}^{*}+M d A_{t}+(C-I) d N_{t}\right)
$$

for an operator $F=\left[\begin{array}{cc}K & M \\ L & C-I\end{array}\right]$ (with dense domain of the form $\mathcal{D} \oplus(\mathcal{D} \otimes \mathrm{D})$), then V is nonsingular and $C^{V}=C$.

Nonsingularity

Definition

$V \in \mathbb{Q} S_{c} \mathbb{C}(\mathfrak{h}, k)$ is nonsingular if

$$
\left(C^{V}(t)\right)_{t>0} \text { converges as } t \rightarrow 0^{+}(\text {W.O.T. })
$$

Write C^{V} for the limit.

Remark

If $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ satisfies the QSDE

$$
d V_{t}=V_{t} d \Lambda_{F}(t)=V_{t}\left(K d t+L d A_{t}^{*}+M d A_{t}+(C-I) d N_{t}\right)
$$

for an operator $F=\left[\begin{array}{cc}K & M \\ L & C-I\end{array}\right]$ (with dense domain of the form $\mathcal{D} \oplus(\mathcal{D} \otimes \mathrm{D}))$, then V is nonsingular and $C^{V}=C$.

Associated quadruple

Let $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, \mathrm{k})$ be nonsingular.

Nonsingularity

Definition

$V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ is nonsingular if

$$
\left(C^{V}(t)\right)_{t>0} \text { converges as } t \rightarrow 0^{+}(\text {W.O.T. })
$$

Write C^{V} for the limit.

Remark

If $V \in \mathbb{Q} S_{c} \mathbb{C}(\mathfrak{h}, k)$ satisfies the QSDE

$$
d V_{t}=V_{t} d \Lambda_{F}(t)=V_{t}\left(K d t+L d A_{t}^{*}+M d A_{t}+(C-I) d N_{t}\right)
$$

for an operator $F=\left[\begin{array}{cc}K & M \\ L & C-I\end{array}\right]$ (with dense domain of the form $\mathcal{D} \oplus(\mathcal{D} \otimes \mathrm{D}))$, then V is nonsingular and $C^{V}=C$.

Associated quadruple

Let $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ be nonsingular. Then \widetilde{V} is nonsingular and, with $K^{V}:=K_{0,0}^{V}, L^{V}:=L_{0}^{V}$ and $\widetilde{L}^{V}:=L_{0}^{\widetilde{V}}$,

Nonsingularity

Definition

$V \in \mathbb{Q} S_{c} \mathbb{C}(\mathfrak{h}, k)$ is nonsingular if

$$
\left(C^{V}(t)\right)_{t>0} \text { converges as } t \rightarrow 0^{+}(\text {W.O.T. })
$$

Write C^{V} for the limit.

Remark

If $V \in \mathbb{Q} S_{c} \mathbb{C}(\mathfrak{h}, k)$ satisfies the QSDE

$$
d V_{t}=V_{t} d \Lambda_{F}(t)=V_{t}\left(K d t+L d A_{t}^{*}+M d A_{t}+(C-I) d N_{t}\right)
$$

for an operator $F=\left[\begin{array}{cc}K & M \\ L & C-I\end{array}\right]$ (with dense domain of the form $\mathcal{D} \oplus(\mathcal{D} \otimes \mathrm{D}))$, then V is nonsingular and $C^{V}=C$.

Associated quadruple

Let $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ be nonsingular. Then \widetilde{V} is nonsingular and, with $K^{V}:=K_{0,0}^{V}, L^{V}:=L_{0}^{V}$ and $\widetilde{L}^{V}:=L_{0}^{\widetilde{V}}$, we have an associated quadruple $\mathbb{F}^{V}:=\left(K^{V}, L^{V}, \widetilde{L}^{V}, C^{V}-I\right)$.

Markov-regular QS coycles

Markov-regular QS coycles

Definition

$V \in \mathbb{Q S} \mathbb{C}_{c} \mathbb{C}(\mathfrak{h}, k)$ is Markov-regular if its expectation semigroup is norm-continuous. Write $\mathbb{Q} \mathbb{S}_{c} \mathbb{C}_{\mathrm{M} . \mathrm{reg}}(\mathfrak{h}, k)$ for this class.

Markov-regular QS coycles

Definition

$V \in \mathbb{Q S} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ is Markov-regular if its expectation semigroup is norm-continuous. Write $\mathbb{Q S}_{c} \mathbb{C}_{\text {M.reg }}(\mathfrak{h}, k)$ for this class.

Theorem. Let $F \in B(\mathfrak{h} \oplus(\mathfrak{h} \otimes \mathfrak{k}))$.

Then the QSDE $d V_{t}=V_{t} d \Lambda_{F}(t), V_{0}=I$ has a unique (strong) solution. Notation: V^{F}.

Markov-regular QS coycles

Definition

$V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ is Markov-regular if its expectation semigroup is norm-continuous. Write $\mathbb{Q S}_{c} \mathbb{C}_{\text {M.reg }}(\mathfrak{h}, k)$ for this class.

Theorem. Let $F \in B(\mathfrak{h} \oplus(\mathfrak{h} \otimes \mathfrak{k}))$.

Then the QSDE $d V_{t}=V_{t} d \Lambda_{F}(t), V_{0}=I$ has a unique (strong) solution. Notation: V^{F}.

Bounded QS generators

$$
C_{0}(\mathfrak{h}, \mathfrak{k}):=\{F \in B(\mathfrak{h} \oplus(\mathfrak{h} \otimes \mathfrak{k})): r(F) \leq 0\},
$$

Markov-regular QS coycles

Definition

$V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ is Markov-regular if its expectation semigroup is norm-continuous. Write $\mathbb{Q S}_{c} \mathbb{C}_{\text {M.reg }}(\mathfrak{h}, k)$ for this class.

Theorem. Let $F \in B(\mathfrak{h} \oplus(\mathfrak{h} \otimes \mathfrak{k}))$.

Then the QSDE $d V_{t}=V_{t} d \Lambda_{F}(t), V_{0}=I$ has a unique (strong) solution. Notation: V^{F}.

Bounded QS generators

$$
C_{0}(\mathfrak{h}, \mathfrak{k}):=\{F \in B(\mathfrak{h} \oplus(\mathfrak{h} \otimes \mathfrak{k})): r(F) \leq 0\},
$$

$$
r(f):=F^{*}+F+F^{*} \Delta F \leq 0 \leq 0
$$

Markov-regular QS coycles

Definition

$V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ is Markov-regular if its expectation semigroup is norm-continuous. Write $\mathbb{Q S}_{c} \mathbb{C}_{\text {M.reg }}(\mathfrak{h}, k)$ for this class.

Theorem. Let $F \in B(\mathfrak{h} \oplus(\mathfrak{h} \otimes \mathfrak{k}))$.

Then the QSDE $d V_{t}=V_{t} d \Lambda_{F}(t), V_{0}=I$ has a unique (strong) solution. Notation: V^{F}.

Bounded QS generators

$$
C_{0}(\mathfrak{h}, \mathfrak{k}):=\{F \in B(\mathfrak{h} \oplus(\mathfrak{h} \otimes \mathfrak{k})): r(F) \leq 0\},
$$

$$
r(f):=F^{*}+F+F^{*} \Delta F \leq 0 \leq 0 \text { iff } q(F):=F+F^{*}+F \Delta F^{*} \leq 0
$$

Markov-regular QS coycles

Definition

$V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, \mathrm{k})$ is Markov-regular if its expectation semigroup is norm-continuous. Write $\mathbb{Q S}_{c} \mathbb{C}_{\text {M.reg }}(\mathfrak{h}, k)$ for this class.

Theorem. Let $F \in B(\mathfrak{h} \oplus(\mathfrak{h} \otimes \mathfrak{k}))$.

Then the QSDE $d V_{t}=V_{t} d \Lambda_{F}(t), V_{0}=l$ has a unique (strong) solution. Notation: V^{F}.

Bounded QS generators

$$
C_{0}(\mathfrak{h}, \mathrm{k}):=\{F \in B(\mathfrak{h} \oplus(\mathfrak{h} \otimes \mathfrak{k})): r(F) \leq 0\},
$$

$$
r(f):=F^{*}+F+F^{*} \Delta F \leq 0 \leq 0 \text { iff } q(F):=F+F^{*}+F \Delta F^{*} \leq 0
$$

Theorem

The map $F \mapsto V^{F}$ restricts to a bijection

$$
C_{0}(\mathfrak{h}, k) \rightarrow \mathbb{Q S}_{c} \mathbb{C}_{\text {M.reg }}(\mathfrak{h}, k)
$$

The \mathbb{Q} cocycle on $B(\mathfrak{h})$ induced by $V \in \mathbb{Q} S_{\mathbb{C}} \mathbb{C}(\mathfrak{h}, \mathfrak{k})$.

The $Q S$ cocycle on $B(\mathfrak{h})$ induced by $V \in \mathbb{Q} S_{\mathbb{C}} \mathbb{C}(\mathfrak{h}, \mathrm{k})$.

Definition

The induced $Q S$ cocycle on $B(\mathfrak{h})$ and its associated semigroups are defined respectively by

$$
\left(k_{t}^{V}: x \mapsto \widetilde{V}\left(x \otimes I_{\mathcal{F}}\right) \widetilde{V}^{*}\right)_{t \geq 0}
$$

The $Q S$ cocycle on $B(\mathfrak{h})$ induced by $V \in \mathbb{Q} S_{\mathbb{C}} \mathbb{C}(\mathfrak{h}, \mathrm{k})$.

Definition

The induced $Q S$ cocycle on $B(\mathfrak{h})$ and its associated semigroups are defined respectively by

$$
\begin{aligned}
& \left(k_{t}^{V}: x \mapsto \widetilde{V}\left(x \otimes I_{\mathcal{F}}\right) \widetilde{V}^{*}\right)_{t \geq 0} \\
& \left(\mathcal{Q}_{t}^{c, d}: x \mapsto \mathbb{E}_{0}\left[\left(V_{t}^{c}\right)^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}^{d}\right]\right)_{t \geq 0}
\end{aligned}
$$

The \mathbb{Q} cocycle on $B(\mathfrak{h})$ induced by $V \in \mathbb{Q} S_{\mathbb{C}} \mathbb{C}(\mathfrak{h}, \mathbf{k})$.

Definition

The induced $Q S$ cocycle on $B(\mathfrak{h})$ and its associated semigroups are defined respectively by

$$
\begin{aligned}
& \left(k_{t}^{V}: x \mapsto \widetilde{V}\left(x \otimes I_{\mathcal{F}}\right) \widetilde{V}^{*}\right)_{t \geq 0} \\
& \left(\mathcal{Q}_{t}^{c, d}: x \mapsto \mathbb{E}_{0}\left[\left(V_{t}^{c}\right)^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}^{d}\right]\right)_{t \geq 0} .
\end{aligned}
$$

Remarks

$$
k_{t}^{V}\left(I_{\mathfrak{h}}\right)=R_{t} V_{t}^{*} V_{t} R_{t}
$$

The $Q S$ cocycle on $B(\mathfrak{h})$ induced by $V \in \mathbb{Q} S_{\mathbb{C}} \mathbb{C}(\mathfrak{h}, \mathrm{k})$.

Definition

The induced $Q S$ cocycle on $B(\mathfrak{h})$ and its associated semigroups are defined respectively by

$$
\begin{aligned}
& \left(k_{t}^{V}: x \mapsto \widetilde{V}\left(x \otimes I_{\mathcal{F}}\right) \widetilde{V}^{*}\right)_{t \geq 0} \\
& \left(\mathcal{Q}_{t}^{c, d}: x \mapsto \mathbb{E}_{0}\left[\left(V_{t}^{c}\right)^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}^{d}\right]\right)_{t \geq 0} .
\end{aligned}
$$

Remarks

$$
k_{t}^{V}\left(I_{\mathfrak{h}}\right)=R_{t} V_{t}^{*} V_{t} R_{t} \text { and } \mathbb{E}_{0}\left[k_{t}^{V}(x)\right]=\mathbb{E}_{0}\left[V_{t}^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}\right]
$$

The $Q S$ cocycle on $B(\mathfrak{h})$ induced by $V \in \mathbb{Q} S_{\mathbb{C}} \mathbb{C}(\mathfrak{h}, \mathrm{k})$.

Definition

The induced $Q S$ cocycle on $B(\mathfrak{h})$ and its associated semigroups are defined respectively by

$$
\begin{aligned}
& \left(k_{t}^{V}: x \mapsto \widetilde{V}\left(x \otimes I_{\mathcal{F}}\right) \widetilde{V}^{*}\right)_{t \geq 0} \\
& \left(\mathcal{Q}_{t}^{c, d}: x \mapsto \mathbb{E}_{0}\left[\left(V_{t}^{c}\right)^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}^{d}\right]\right)_{t \geq 0}
\end{aligned}
$$

Remarks

$$
k_{t}^{V}\left(I_{\mathfrak{h}}\right)=R_{t} V_{t}^{*} V_{t} R_{t} \text { and } \mathbb{E}_{0}\left[k_{t}^{V}(x)\right]=\mathbb{E}_{0}\left[V_{t}^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}\right]
$$

Theorem

Let T be a total subset of k containing 0 . Then TFAE:

The $Q S$ cocycle on $B(\mathfrak{h})$ induced by $V \in \mathbb{Q} S_{\mathbb{C}} \mathbb{C}(\mathfrak{h}, \mathrm{k})$.

Definition

The induced $Q S$ cocycle on $B(\mathfrak{h})$ and its associated semigroups are defined respectively by

$$
\begin{aligned}
& \left(k_{t}^{V}: x \mapsto \widetilde{V}\left(x \otimes I_{\mathcal{F}}\right) \widetilde{V}^{*}\right)_{t \geq 0} \\
& \left(\mathcal{Q}_{t}^{c, d}: x \mapsto \mathbb{E}_{0}\left[\left(V_{t}^{c}\right)^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}^{d}\right]\right)_{t \geq 0}
\end{aligned}
$$

Remarks

$$
k_{t}^{V}\left(I_{\mathfrak{h}}\right)=R_{t} V_{t}^{*} V_{t} R_{t} \text { and } \mathbb{E}_{0}\left[k_{t}^{V}(x)\right]=\mathbb{E}_{0}\left[V_{t}^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}\right]
$$

Theorem

Let T be a total subset of k containing 0 . Then TFAE:
(i) k^{V} is unital (equivalently V is isometric);

The $Q S$ cocycle on $B(\mathfrak{h})$ induced by $V \in \mathbb{Q} S_{\mathbb{C}} \mathbb{C}(\mathfrak{h}, \mathrm{k})$.

Definition

The induced $Q S$ cocycle on $B(\mathfrak{h})$ and its associated semigroups are defined respectively by

$$
\begin{aligned}
& \left(k_{t}^{V}: x \mapsto \widetilde{V}\left(x \otimes I_{\mathcal{F}}\right) \widetilde{V}^{*}\right)_{t \geq 0} \\
& \left(\mathcal{Q}_{t}^{c, d}: x \mapsto \mathbb{E}_{0}\left[\left(V_{t}^{c}\right)^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}^{d}\right]\right)_{t \geq 0}
\end{aligned}
$$

Remarks

$$
k_{t}^{V}\left(I_{\mathfrak{h}}\right)=R_{t} V_{t}^{*} V_{t} R_{t} \text { and } \mathbb{E}_{0}\left[k_{t}^{V}(x)\right]=\mathbb{E}_{0}\left[V_{t}^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}\right]
$$

Theorem

Let T be a total subset of k containing 0 . Then TFAE:
(i) k^{V} is unital (equivalently V is isometric);
(ii) $\mathcal{Q}^{c, c}$ is conservative for all $c \in \mathrm{~T}$.

Holomorphic contraction semigroups on \mathfrak{h}

Holomorphic contraction semigroups on \mathfrak{h}

Theorem (Ouhabaz)

On \mathfrak{h}, there is a trijective correspondence between

Holomorphic contraction semigroups on \mathfrak{h}

Theorem (Ouhabaz)

On \mathfrak{h}, there is a trijective correspondence between
(i) semisectorial, maximal accretive operators $-G$;

Holomorphic contraction semigroups on \mathfrak{h}

Theorem (Ouhabaz)

On \mathfrak{h}, there is a trijective correspondence between
(i) semisectorial, maximal accretive operators $-G$;
(ii) closed, densely defined, semisectorial, accretive quadratic forms (q, \mathcal{Q});

Holomorphic contraction semigroups on \mathfrak{h}

Theorem (Ouhabaz)

On \mathfrak{h}, there is a trijective correspondence between
(i) semisectorial, maximal accretive operators $-G$;
(ii) closed, densely defined, semisectorial, accretive quadratic forms (q, \mathcal{Q});
(iii) holomorphic contraction semigroups P;

Holomorphic contraction semigroups on \mathfrak{h}

Theorem (Ouhabaz)

On \mathfrak{h}, there is a trijective correspondence between
(i) semisectorial, maximal accretive operators $-G$;
(ii) closed, densely defined, semisectorial, accretive quadratic forms (q, \mathcal{Q});
(iii) holomorphic contraction semigroups P;
such that

Holomorphic contraction semigroups on \mathfrak{h}

Theorem (Ouhabaz)

On \mathfrak{h}, there is a trijective correspondence between
(i) semisectorial, maximal accretive operators $-G$;
(ii) closed, densely defined, semisectorial, accretive quadratic forms (q, \mathcal{Q});
(iii) holomorphic contraction semigroups P; such that P is the semigroup generated by G,

Holomorphic contraction semigroups on \mathfrak{h}

Theorem (Ouhabaz)

On \mathfrak{h}, there is a trijective correspondence between
(i) semisectorial, maximal accretive operators $-G$;
(ii) closed, densely defined, semisectorial, accretive quadratic forms (q, \mathcal{Q});
(iii) holomorphic contraction semigroups P;
such that P is the semigroup generated by $G,(q, \mathcal{Q})$ is the form-generator of P, and

Holomorphic contraction semigroups on \mathfrak{h}

Theorem (Ouhabaz)

On \mathfrak{h}, there is a trijective correspondence between
(i) semisectorial, maximal accretive operators $-G$;
(ii) closed, densely defined, semisectorial, accretive quadratic forms (q, \mathcal{Q});
(iii) holomorphic contraction semigroups P;
such that P is the semigroup generated by $G,(q, \mathcal{Q})$ is the form-generator of P, and $-G$ is the closed operator associated with (q, \mathcal{Q}) :

Holomorphic contraction semigroups on \mathfrak{h}

Theorem (Ouhabaz)

On \mathfrak{h}, there is a trijective correspondence between
(i) semisectorial, maximal accretive operators $-G$;
(ii) closed, densely defined, semisectorial, accretive quadratic forms (q, \mathcal{Q});
(iii) holomorphic contraction semigroups P;
such that P is the semigroup generated by $G,(q, \mathcal{Q})$ is the form-generator of P, and $-G$ is the closed operator associated with (q, \mathcal{Q}) :

$$
\begin{aligned}
& P_{t} v=\lim _{n \rightarrow \infty}\left(I-n^{-1} t G\right)^{-n} v \quad(v \in \mathfrak{h}), \\
& \mathcal{Q}=\left\{v \in \mathfrak{h}: \sup _{t>0} t^{-1} \operatorname{Re}\left\langle v,\left(I-P_{t}\right) v\right\rangle<\infty\right\} \\
& q[v]=\lim _{t \rightarrow 0^{+}} t^{-1}\left\langle v,\left(I-P_{t}\right) v\right\rangle
\end{aligned}
$$

Dom $G=\left\{v \in \mathcal{Q}: \exists_{v^{\prime} \in \mathfrak{h}} \forall_{u \in \mathcal{Q}}\left\langle u, v^{\prime}\right\rangle=-q(u, v)\right\}, G v=v^{\prime}$.

Some definitions

Some definitions

For a quadratic form q on \mathfrak{h} with domain \mathcal{Q},

Some definitions

For a quadratic form q on \mathfrak{h} with domain \mathcal{Q},

- (q, \mathcal{Q}) is accretive if

$$
\operatorname{Re} q[v] \geq 0, \quad v \in \mathcal{Q}
$$

Some definitions

For a quadratic form q on \mathfrak{h} with domain \mathcal{Q},

- (q, \mathcal{Q}) is accretive if

$$
\operatorname{Re} q[v] \geq 0, \quad v \in \mathcal{Q}
$$

For an accretive quadratic form (q, \mathcal{Q}),

Some definitions

For a quadratic form q on \mathfrak{h} with domain \mathcal{Q},

- (q, \mathcal{Q}) is accretive if

$$
\operatorname{Re} q[v] \geq 0, \quad v \in \mathcal{Q}
$$

For an accretive quadratic form (q, \mathcal{Q}),

- An inner-product norm on \mathcal{Q} is given by

$$
\|v\|_{q}:=\left(\operatorname{Req}[v]+\|v\|^{2}\right)^{1 / 2}
$$

Some definitions

For a quadratic form q on \mathfrak{h} with domain \mathcal{Q},

- (q, \mathcal{Q}) is accretive if

$$
\operatorname{Re} q[v] \geq 0, \quad v \in \mathcal{Q}
$$

For an accretive quadratic form (q, \mathcal{Q}),

- An inner-product norm on \mathcal{Q} is given by

$$
\|v\|_{q}:=\left(\operatorname{Re} q[v]+\|v\|^{2}\right)^{1 / 2}
$$

- (q, \mathcal{Q}) is closed if \mathcal{Q} is complete in the norm $\|\cdot\|_{q}$;

Some definitions

For a quadratic form q on \mathfrak{h} with domain \mathcal{Q},

- (q, \mathcal{Q}) is accretive if

$$
\operatorname{Re} q[v] \geq 0, \quad v \in \mathcal{Q}
$$

For an accretive quadratic form (q, \mathcal{Q}),

- An inner-product norm on \mathcal{Q} is given by

$$
\|v\|_{q}:=\left(\operatorname{Req} q[v]+\|v\|^{2}\right)^{1 / 2}
$$

- (q, \mathcal{Q}) is closed if \mathcal{Q} is complete in the norm $\|\cdot\|_{q}$;
- (q, \mathcal{Q}) is semisectorial if there is $C \geq 0$ such that

$$
|\operatorname{lm} q[v]| \leq C\|v\|_{q}, \quad v \in \mathcal{Q}
$$

Some definitions

For a quadratic form q on \mathfrak{h} with domain \mathcal{Q},

- (q, \mathcal{Q}) is accretive if

$$
\operatorname{Re} q[v] \geq 0, \quad v \in \mathcal{Q}
$$

For an accretive quadratic form (q, \mathcal{Q}),

- An inner-product norm on \mathcal{Q} is given by

$$
\|v\|_{q}:=\left(\operatorname{Req}[v]+\|v\|^{2}\right)^{1 / 2}
$$

- (q, \mathcal{Q}) is closed if \mathcal{Q} is complete in the norm $\|\cdot\|_{q}$;
- (q, \mathcal{Q}) is semisectorial if there is $C \geq 0$ such that

$$
|\operatorname{lm} q[v]| \leq C\|v\|_{q}, \quad v \in \mathcal{Q}
$$

Set $\mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$ equal to

$$
\left\{(K, L) \in \mathfrak{X}_{2}(\mathfrak{h}, \mathrm{k}):-K \text { is semisectorial and } \operatorname{Dom} L=\mathcal{Q}\right\}
$$

where \mathcal{Q} is the domain of the quadratic form associated with K.

Holomorphic QS contraction cocycles: definition

Definition

We call $V \in \mathbb{Q S}_{c} \mathbb{C}(\mathfrak{h}, k)$ holomorphic if its expectation semigroup is holomorphic.

Holomorphic QS contraction cocycles: definition

Definition

We call $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ holomorphic if its expectation semigroup is holomorphic.
Write $\mathbb{Q} S_{c} \mathbb{C}_{\text {Hol }}(\mathfrak{h}, k)$ for the collection of these.

Holomorphic QS contraction cocycles: definition

Definition

We call $V \in \mathbb{Q S}_{c} \mathbb{C}(\mathfrak{h}, k)$ holomorphic if its expectation semigroup is holomorphic.
Write $\mathbb{Q} S_{c} \mathbb{C}_{\text {Hol }}(\mathfrak{h}, k)$ for the collection of these.
Thus

$$
\mathbb{Q} \mathbb{S}_{c} \mathbb{C}_{\mathrm{M.reg}}(\mathfrak{h}, k) \subset \mathbb{Q} \mathbb{S}_{c} \mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, k)
$$

Holomorphic QS contraction cocycles: definition

Definition

We call $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}(\mathfrak{h}, k)$ holomorphic if its expectation semigroup is holomorphic.
Write $\mathbb{Q} S_{c} \mathbb{C}_{\text {Hol }}(\mathfrak{h}, k)$ for the collection of these.
Thus

$$
\mathbb{Q} \mathbb{S}_{c} \mathbb{C}_{\mathrm{M} . \mathrm{reg}}(\mathfrak{h}, k) \subset \mathbb{Q} \mathbb{S}_{c} \mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, k),
$$

and
\widetilde{V} is homolorphic if and only if V is.

Holomorphic QS contraction cocycles

Holomorphic QS contraction cocycles

Theorem
 Let $V \in \mathbb{Q S}_{c} \mathbb{C}_{\text {Hol }}(\mathfrak{h}, \mathfrak{k})$. Then V is nonsingular.

Holomorphic QS contraction cocycles

Theorem

Let $V \in \mathbb{Q S}_{c} \mathbb{C}_{\text {Hol }}(\mathfrak{h}, \mathfrak{k})$. Then V is nonsingular.
Therefore V has an associated quadruple

$$
\mathbb{F}^{V}=\left(K^{V}, L^{V}, \widetilde{L}^{V}, C^{V}-I_{\mathfrak{h} \otimes \mathrm{k}}\right)
$$

Holomorphic QS contraction cocycles

Theorem

Let $V \in \mathbb{Q S}_{c} \mathbb{C}_{\text {Hol }}(\mathfrak{h}, \mathfrak{k})$. Then V is nonsingular.
Therefore V has an associated quadruple

$$
\mathbb{F}^{V}=\left(K^{V}, L^{V}, \widetilde{L}^{V}, C^{V}-I_{\mathfrak{h} \otimes \mathrm{k}}\right)
$$

Theorem

Let $V \in \mathbb{Q} \mathbb{S}_{c} \mathbb{C}_{\text {Hol }}(\mathfrak{h}, \mathrm{k})$. Then each of its
(associated semigroups $Q^{c, d}$ is holomorphic,

Holomorphic QS contraction cocycles

Theorem

Let $V \in \mathbb{Q S}_{c} \mathbb{C}_{\text {Hol }}(\mathfrak{h}, \mathfrak{k})$. Then V is nonsingular.
Therefore V has an associated quadruple

$$
\mathbb{F}^{V}=\left(K^{V}, L^{V}, \widetilde{L}^{V}, C^{V}-I_{\mathfrak{h} \otimes k}\right)
$$

Theorem

Let $V \in \mathbb{Q S}_{c} \mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, k)$. Then each of its
(associated semigroups $Q^{c, d}$ is holomorphic, and so each of its) associated cocycles $V^{c, d}$ is holomorphic.

Structure relations

Structure relations

Definition

Set $\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, k)$ equal to the set of quadruples $\mathbb{F}=(K, L, \widetilde{L}, C-I)$ such that

Structure relations

Definition

Set $\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, k)$ equal to the set of quadruples $\mathbb{F}=(K, L, \widetilde{L}, C-I)$ such that

- - K is a maximal accretive and semisectorial operator on \mathfrak{h},

Structure relations

Definition

Set $\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, k)$ equal to the set of quadruples $\mathbb{F}=(K, L, \widetilde{L}, C-I)$ such that

- - K is a maximal accretive and semisectorial operator on \mathfrak{h},
- L, \tilde{L} are operators from \mathfrak{h} to $\mathfrak{h} \otimes \mathrm{k}$ with domain \mathcal{Q},

Structure relations

Definition

Set $\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$ equal to the set of quadruples $\mathbb{F}=(K, L, \widetilde{L}, C-I)$ such that

- - K is a maximal accretive and semisectorial operator on \mathfrak{h},
- L, \tilde{L} are operators from \mathfrak{h} to $\mathfrak{h} \otimes k$ with domain \mathcal{Q},
- C is a contraction in $B(\mathfrak{h} \otimes k)$,

Structure relations

Definition

Set $\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, k)$ equal to the set of quadruples $\mathbb{F}=(K, L, \widetilde{L}, C-I)$ such that

- - K is a maximal accretive and semisectorial operator on \mathfrak{h},
- L, \tilde{L} are operators from \mathfrak{h} to $\mathfrak{h} \otimes \mathrm{k}$ with domain \mathcal{Q},
- C is a contraction in $B(\mathfrak{h} \otimes \mathrm{k})$,
- $\|\Delta F \zeta\|^{2} \leq 2 \operatorname{Re} \Gamma[\zeta]$,

Structure relations

Definition

Set $\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$ equal to the set of quadruples $\mathbb{F}=(K, L, \widetilde{L}, C-I)$ such that

- - K is a maximal accretive and semisectorial operator on \mathfrak{h},
- L, \tilde{L} are operators from \mathfrak{h} to $\mathfrak{h} \otimes \mathrm{k}$ with domain \mathcal{Q},
- C is a contraction in $B(\mathfrak{h} \otimes k)$,
- $\|\Delta F \zeta\|^{2} \leq 2 \operatorname{Re} \Gamma[\zeta]$,
where, in terms of the form-generator (γ, \mathcal{Q}) of the expectation semigroup of V,

Structure relations

Definition

Set $\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, k)$ equal to the set of quadruples $\mathbb{F}=(K, L, \widetilde{L}, C-I)$ such that

- - K is a maximal accretive and semisectorial operator on \mathfrak{h},
- L, \tilde{L} are operators from \mathfrak{h} to $\mathfrak{h} \otimes \mathrm{k}$ with domain \mathcal{Q},
- C is a contraction in $B(\mathfrak{h} \otimes \mathrm{k})$,
- $\|\Delta F \zeta\|^{2} \leq 2 \operatorname{Re} \Gamma[\zeta]$,
where, in terms of the form-generator (γ, \mathcal{Q}) of the expectation semigroup of V,

$$
\begin{aligned}
& \operatorname{Dom} \Gamma=\operatorname{Dom} \Delta F=\mathcal{Q} \oplus(\mathfrak{h} \otimes \mathfrak{k}) \\
& \Gamma[\zeta]=\gamma[v]-\{\langle\xi, L v\rangle+\langle\widetilde{L} v, \xi\rangle+\langle\xi,(C-I) \xi\rangle\} \text { for } \zeta=\binom{v}{\xi}, \\
& \Delta F=\left[\begin{array}{ll}
0 & 0 \\
L & C-I
\end{array}\right] .
\end{aligned}
$$

Remarks on the structure relations

Remarks

- We have the inclusion

$$
\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k}) \supset\left\{\left(K, L, M^{*}, C-I\right):\left[\begin{array}{cc}
K & M \\
L & C-I
\end{array}\right] \in C_{0}(\mathfrak{h}, \mathrm{k})\right\}
$$

Remarks

- We have the inclusion

$$
\begin{aligned}
& \mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k}) \supset\left\{\left(K, L, M^{*}, C-I\right):\left[\begin{array}{cc}
K & M \\
L & C_{-I}
\end{array}\right] \in C_{0}(\mathfrak{h}, \mathrm{k})\right\} \\
& \text { - If }(K, L, \widetilde{L}, C-I) \in \mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k}) \text { then }(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k}) .
\end{aligned}
$$

Remarks on the structure relations

Remarks

- We have the inclusion

$$
\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k}) \supset\left\{\left(K, L, M^{*}, C-I\right):\left[\begin{array}{cc}
K & M \\
L & C-I
\end{array}\right] \in C_{0}(\mathfrak{h}, \mathrm{k})\right\}
$$

- If $(K, L, \widetilde{L}, C-I) \in \mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$ then $(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$.
- In the converse direction,

Remarks on the structure relations

Remarks

- We have the inclusion

$$
\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k}) \supset\left\{\left(K, L, M^{*}, C-I\right):\left[\begin{array}{cc}
K & M \\
L & C-I
\end{array}\right] \in C_{0}(\mathfrak{h}, \mathrm{k})\right\}
$$

- If $(K, L, \tilde{L}, C-I) \in \mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$ then $(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$.
- In the converse direction,
if $(K, L) \in \mathfrak{X}_{2}^{\text {Hol }}(\mathfrak{h}, \mathrm{k})$ then, for any contraction $C \in B(\mathfrak{h} \otimes \mathfrak{k})$, we have

$$
\left(K, L,-C^{*} L, C-I\right) \in \mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k}) .
$$

Remarks on the structure relations

Remarks

- We have the inclusion

$$
\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k}) \supset\left\{\left(K, L, M^{*}, C-I\right):\left[\begin{array}{cc}
K & M \\
L & C-I
\end{array}\right] \in C_{0}(\mathfrak{h}, \mathrm{k})\right\}
$$

- If $(K, L, \widetilde{L}, C-I) \in \mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$ then $(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$.
- In the converse direction,
if $(K, L) \in \mathfrak{X}_{2}^{\text {Hol }}(\mathfrak{h}, \mathrm{k})$ then, for any contraction $C \in B(\mathfrak{h} \otimes \mathfrak{k})$, we have

$$
\left(K, L,-C^{*} L, C-I\right) \in \mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k}) .
$$

In particular, $(K, L,-L, 0),(K, L, 0,-I) \in \mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$.

The stochastic generator of a homomorphic QS cocycle

The stochastic generator of a homomorphic QS cocycle

Theorem
The prescription

$$
V \mapsto \mathbb{F}^{V}
$$

defines a bijection

$$
\mathbb{Q S}_{c} \mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, k) \rightarrow \mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k}),
$$

The stochastic generator of a homomorphic QS cocycle

Theorem

The prescription

$$
V \mapsto \mathbb{F}^{V}
$$

defines a bijection

$$
\mathbb{Q S}_{c} \mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, k) \rightarrow \mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, k),
$$

'extending' the inverse of our earlier bijection

$$
C_{0}(\mathfrak{h}, k) \rightarrow \mathbb{Q S}_{c} \mathbb{C}_{\mathrm{M.reg}}(\mathfrak{h}, \mathrm{k}), \quad F \mapsto V^{F}
$$

The stochastic generator of a homomorphic QS cocycle

Theorem

The prescription

$$
V \mapsto \mathbb{F}^{V}
$$

defines a bijection

$$
\mathbb{Q S}_{c} \mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, k) \rightarrow \mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, k),
$$

'extending' the inverse of our earlier bijection

$$
C_{0}(\mathfrak{h}, k) \rightarrow \mathbb{Q S}_{c} \mathbb{C}_{\mathrm{M.reg}}(\mathfrak{h}, k), \quad F \mapsto V^{F}
$$

This justifies the following definition.

The stochastic generator of a homomorphic QS cocycle

Theorem

The prescription

$$
V \mapsto \mathbb{F}^{V}
$$

defines a bijection

$$
\mathbb{Q S}_{c} \mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, \mathfrak{k}) \rightarrow \mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h}, k)
$$

'extending' the inverse of our earlier bijection

$$
C_{0}(\mathfrak{h}, k) \rightarrow \mathbb{Q S}_{c} \mathbb{C}_{\mathrm{M.reg}}(\mathfrak{h}, k), \quad F \mapsto V^{F}
$$

This justifies the following definition.

Definition

For $V \in \mathbb{Q S}_{c} \mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, k)$, we refer to \mathbb{F}^{V} as the stochastic generator of V.

Holomorphic QS cocycles induce 'dilations' of minimal QDS's

Holomorphic QS cocycles

 induce 'dilations' of minimal QDS's
Theorem
 Let $V \in \mathbb{Q S}_{c} \mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$.

Holomorphic QS cocycles induce 'dilations' of minimal QDS's

Theorem

Let $V \in \mathbb{Q S}_{c} \mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, k)$. Then

$$
\begin{equation*}
\mathbb{E}_{0}\left[V_{t}^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}\right]=\mathcal{T}_{t}^{K, L}(x), \quad x \in B(\mathfrak{h}), t \geq 0 \tag{2}
\end{equation*}
$$

Holomorphic QS cocycles

 induce 'dilations' of minimal QDS's
Theorem

Let $V \in \mathbb{Q S}_{c} \mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, k)$. Then

$$
\begin{equation*}
\mathbb{E}_{0}\left[V_{t}^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}\right]=\mathcal{T}_{t}^{K, L}(x), \quad x \in B(\mathfrak{h}), t \geq 0 \tag{2}
\end{equation*}
$$

where $(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, k)$ is the truncation of the stochastic generator of V to its first two components

Holomorphic QS cocycles

 induce 'dilations' of minimal QDS's
Theorem

Let $V \in \mathbb{Q S}_{c} \mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$. Then

$$
\begin{equation*}
\mathbb{E}_{0}\left[V_{t}^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}\right]=\mathcal{T}_{t}^{K, L}(x), \quad x \in B(\mathfrak{h}), t \geq 0 \tag{2}
\end{equation*}
$$

where $(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, k)$ is the truncation of the stochastic generator of V to its first two components [i.e. \mathbb{F}^{V} is of the form $\left.(K, L, *, *)\right]$.

Holomorphic QS cocycles

 induce 'dilations' of minimal QDS's
Theorem

Let $V \in \mathbb{Q S}_{c} \mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$. Then

$$
\begin{equation*}
\mathbb{E}_{0}\left[V_{t}^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}\right]=\mathcal{T}_{t}^{K, L}(x), \quad x \in B(\mathfrak{h}), t \geq 0 \tag{2}
\end{equation*}
$$

where $(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$ is the truncation of the stochastic generator of V to its first two components [i.e. \mathbb{F}^{V} is of the form $\left.(K, L, *, *)\right]$.

Corollary
Let $(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$.

Holomorphic QS cocycles

 induce 'dilations' of minimal QDS's
Theorem

Let $V \in \mathbb{Q S}_{c} \mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$. Then

$$
\begin{equation*}
\mathbb{E}_{0}\left[V_{t}^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}\right]=\mathcal{T}_{t}^{K, L}(x), \quad x \in B(\mathfrak{h}), t \geq 0 \tag{2}
\end{equation*}
$$

where $(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, k)$ is the truncation of the stochastic generator of V to its first two components [i.e. \mathbb{F}^{V} is of the form $\left.(K, L, *, *)\right]$.

Corollary

Let $(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$. Then, letting $V=V^{\mathbb{F}}$, where
$\mathbb{F}=\left(K, L,-C^{*} L, C-I\right)$ for a contraction $C \in B(\mathfrak{h} \otimes k)$,

Holomorphic QS cocycles

 induce 'dilations' of minimal QDS's
Theorem

Let $V \in \mathbb{Q S}_{c} \mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$. Then

$$
\begin{equation*}
\mathbb{E}_{0}\left[V_{t}^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}\right]=\mathcal{T}_{t}^{K, L}(x), \quad x \in B(\mathfrak{h}), t \geq 0 \tag{2}
\end{equation*}
$$

where $(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$ is the truncation of the stochastic generator of V to its first two components [i.e. \mathbb{F}^{V} is of the form $\left.(K, L, *, *)\right]$.

Corollary

Let $(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$. Then, letting $V=V^{\mathbb{F}}$, where
$\mathbb{F}=\left(K, L,-C^{*} L, C-I\right)$ for a contraction $C \in B(\mathfrak{h} \otimes k)$, e.g.
$\mathbb{F}=(K, L,-L, 0)$,

Holomorphic QS cocycles

 induce 'dilations' of minimal QDS's
Theorem

Let $V \in \mathbb{Q S}_{c} \mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$. Then

$$
\begin{equation*}
\mathbb{E}_{0}\left[V_{t}^{*}\left(x \otimes I_{\mathcal{F}}\right) V_{t}\right]=\mathcal{T}_{t}^{K, L}(x), \quad x \in B(\mathfrak{h}), t \geq 0 \tag{2}
\end{equation*}
$$

where $(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$ is the truncation of the stochastic generator of V to its first two components [i.e. \mathbb{F}^{V} is of the form $\left.(K, L, *, *)\right]$.

Corollary

Let $(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, \mathrm{k})$. Then, letting $V=V^{\mathbb{F}}$, where
$\mathbb{F}=\left(K, L,-C^{*} L, C-I\right)$ for a contraction $C \in B(\mathfrak{h} \otimes k)$, e.g.
$\mathbb{F}=(K, L,-L, 0),(2)$ holds.

Acknowledgements

Acknowledgements

This is joint work with Kalyan Sinha.
It is supported by the UKIERI Research Collaboration Network Quantum Probability - Noncommutative Geometry - Quantum Information

