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h a fixed Hilbert space.

Definition: Quantum dynamical semigroup on B(h)

A pointwise ultraweakly continuous semigroup T = (Tt)t≥0 of
normal, completely positive, contractions on B(h);
it is called conservative if it is identity preserving.

Theorem (Lindblad, Gorini-Kossakowski-Sudarshan)

The norm-continuous QDS’s are (etL)t≥0 where

L : x 7→ x K + K ∗ x + L∗(x ⊗ Ik)L, and

K + K ∗ + L∗L ≤ 0,

for a Hilbert space k and operators K ∈ B(h) and L ∈ B(h; h ⊗ k).



Minimal QDS’s



Minimal QDS’s

Setup 2/3

h and k, two fixed Hilbert spaces



Minimal QDS’s

Setup 2/3

h and k, two fixed Hilbert spaces

(K ,L) ∈ X(h, k), that is
K is the generator of a contractive C0-semigroup on h;



Minimal QDS’s

Setup 2/3

h and k, two fixed Hilbert spaces

(K ,L) ∈ X(h, k), that is
K is the generator of a contractive C0-semigroup on h;
L is an operator from h to h ⊗ k, such that



Minimal QDS’s

Setup 2/3

h and k, two fixed Hilbert spaces

(K ,L) ∈ X(h, k), that is
K is the generator of a contractive C0-semigroup on h;
L is an operator from h to h ⊗ k, such that

Dom L ⊃ Dom K ; ‖Lv‖2 + 2Re〈v ,Kv〉 ≤ 0, v ∈ Dom K .



Minimal QDS’s

Setup 2/3

h and k, two fixed Hilbert spaces

(K ,L) ∈ X(h, k), that is
K is the generator of a contractive C0-semigroup on h;
L is an operator from h to h ⊗ k, such that

Dom L ⊃ Dom K ; ‖Lv‖2 + 2Re〈v ,Kv〉 ≤ 0, v ∈ Dom K .
Associated quadratic forms: for x ∈ B(h),

LK ,L(x)[v ] := 〈v , x Kv〉+〈Kv , xv〉+〈Lv , x⊗Ik Lv〉, v ∈ DomK .



Minimal QDS’s

Setup 2/3

h and k, two fixed Hilbert spaces

(K ,L) ∈ X(h, k), that is
K is the generator of a contractive C0-semigroup on h;
L is an operator from h to h ⊗ k, such that

Dom L ⊃ Dom K ; ‖Lv‖2 + 2Re〈v ,Kv〉 ≤ 0, v ∈ Dom K .
Associated quadratic forms: for x ∈ B(h),

LK ,L(x)[v ] := 〈v , x Kv〉+〈Kv , xv〉+〈Lv , x⊗Ik Lv〉, v ∈ DomK .

Definition (Minimal QDS T for (K ,L) ∈ X(h, k))



Minimal QDS’s

Setup 2/3

h and k, two fixed Hilbert spaces

(K ,L) ∈ X(h, k), that is
K is the generator of a contractive C0-semigroup on h;
L is an operator from h to h ⊗ k, such that

Dom L ⊃ Dom K ; ‖Lv‖2 + 2Re〈v ,Kv〉 ≤ 0, v ∈ Dom K .
Associated quadratic forms: for x ∈ B(h),

LK ,L(x)[v ] := 〈v , x Kv〉+〈Kv , xv〉+〈Lv , x⊗Ik Lv〉, v ∈ DomK .

Definition (Minimal QDS T for (K ,L) ∈ X(h, k))

(i) For all x ∈ B(h) and v ∈ DomK ,



Minimal QDS’s

Setup 2/3

h and k, two fixed Hilbert spaces

(K ,L) ∈ X(h, k), that is
K is the generator of a contractive C0-semigroup on h;
L is an operator from h to h ⊗ k, such that

Dom L ⊃ Dom K ; ‖Lv‖2 + 2Re〈v ,Kv〉 ≤ 0, v ∈ Dom K .
Associated quadratic forms: for x ∈ B(h),

LK ,L(x)[v ] := 〈v , x Kv〉+〈Kv , xv〉+〈Lv , x⊗Ik Lv〉, v ∈ DomK .

Definition (Minimal QDS T for (K ,L) ∈ X(h, k))

(i) For all x ∈ B(h) and v ∈ DomK ,

〈v ,Tt(x)v〉 = 〈v , xv〉 +

∫ t

0
ds LK ,L(Ts(x)[v ]. (1)



Minimal QDS’s

Setup 2/3

h and k, two fixed Hilbert spaces

(K ,L) ∈ X(h, k), that is
K is the generator of a contractive C0-semigroup on h;
L is an operator from h to h ⊗ k, such that

Dom L ⊃ Dom K ; ‖Lv‖2 + 2Re〈v ,Kv〉 ≤ 0, v ∈ Dom K .
Associated quadratic forms: for x ∈ B(h),

LK ,L(x)[v ] := 〈v , x Kv〉+〈Kv , xv〉+〈Lv , x⊗Ik Lv〉, v ∈ DomK .

Definition (Minimal QDS T for (K ,L) ∈ X(h, k))

(i) For all x ∈ B(h) and v ∈ DomK ,

〈v ,Tt(x)v〉 = 〈v , xv〉 +

∫ t

0
ds LK ,L(Ts(x)[v ]. (1)

(ii) For any other QDS T ′ satisfying (1),



Minimal QDS’s

Setup 2/3

h and k, two fixed Hilbert spaces
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Definition (Minimal QDS T for (K ,L) ∈ X(h, k))

(i) For all x ∈ B(h) and v ∈ DomK ,

〈v ,Tt(x)v〉 = 〈v , xv〉 +

∫ t

0
ds LK ,L(Ts(x)[v ]. (1)

(ii) For any other QDS T ′ satisfying (1),

Tt(x) ≤ T ′
t (x), for all t ∈ R+, x ∈ B(h)+.
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Theorem (Davies, after Kato and Feller)

Let (K ,L) ∈ X(h, k).
Then there is a unique minimal QDS T K ,L associated to (K ,L).
If T K ,L is conservative then L(K ,L)(1) = 0, in other words

‖Lv‖2 + 2Re〈v ,Kv〉 = 0, v ∈ Dom K .
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h and k, two fixed Hilbert spaces

F := Γ(L2(R+; k))

̟(f ) := exp(−‖f ‖2/2)ε(f ), f ∈ L2(R+; k)

∆ :=
[

0h

Ih⊗k

]
∈ B(h ⊕ (h ⊗ k)),

(
z
c

)
7→

(0
c

)

F = F[0,r [ ⊗F[r ,t[ ⊗F[t,∞[, where F[r ,t[ := Γ(L2([r , t[; k))
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Definition

V = (Vt)t≥0 contractions in B(h ⊗F) satisfying

Vs+t = Vsσs(Vt) and V0 = I

Vt ∈ B(h ⊗F[0,t[) ⊗ I[t,∞[

t 7→ Vt is strongly continuous

σs(Vt) ∈ B(h) ⊗ I[0,s[ ⊗B(F[s,s+t[) ⊗ I[s+t,∞[

Notation: QScC(h, k)

Expectation semigroup of V

Q0,0 := (E0[Vt ])t≥0 where Es := idB(h⊗F[0,s[) ⊗ωε(0[s,∞[).

E0 = E0 ◦ Es and Es ◦ σs = E0.
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For V ∈ QScC(h, k),

V c,d :=
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t )∗VtW
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σr (Vt) ⌣ Ih ⊗ W (e[0,r [) in B(h) ⊗F[0,r [ ⊗F[r ,∞[.

Definition (Dual cocycle)

For V ∈ QScC(h, k),

Ṽ :=
(
(Ih ⊗ Rt)V

∗
t (Ih ⊗ Rt)

)
t≥0

where Rt is the (unitary) time-reversal operator determined by

Rtε(f ) := ε(rt f ), f ∈ L2(R+; k)

with (rt f )(s) := f (t − s) for s ∈ [0, t[ and := f (s) for s ∈ [t,∞[.
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Definition (Associated semigroups)

For V ∈ QScC(h, k),

Qc,d :=
(
(idB(h) ⊗ω̟(c[0,t[),̟(c[0,t[))(Vt)

)
t≥0

=
(
E0[V

c,d
t ]

)
t≥0

, c , d ∈ k.
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(CV (t))t>0 is a family of contractions in B(h ⊗ k).

Dom KV
c,d = DV

d for all c , d ∈ k.

For all v ∈ DV
d , LV

d v := limt→0+ LV
d (t)v exists and

(KV
c,d ,LV

d ) ∈ X(h, k):
‖LV

d v‖2 + 2Re〈v ,KV
c,dv〉 ≤ 0.
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Nonsingularity

Definition

V ∈ QScC(h, k) is nonsingular if

(CV (t))t>0 converges as t → 0+ (W.O.T.).

Write CV for the limit.

Remark

If V ∈ QScC(h, k) satisfies the QSDE

dVt = VtdΛF (t) = Vt(Kdt + LdA∗
t + MdAt + (C − I )dNt)

for an operator F =
[

K M
L C−I

]
(with dense domain of the form

D ⊕ (D⊗D)), then V is nonsingular and CV = C .

Associated quadruple

Let V ∈ QScC(h, k) be nonsingular. Then Ṽ is nonsingular and,

with KV := KV
0,0, LV := LV

0 and L̃V := LṼ
0 , we have

an associated quadruple FV := (KV ,LV , L̃V ,CV − I ).
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Markov-regular QS coycles

Definition

V ∈ QScC(h, k) is Markov-regular if its expectation semigroup is
norm-continuous. Write QScCM.reg(h, k) for this class.

Theorem. Let F ∈ B(h ⊕ (h ⊗ k)).

Then the QSDE dVt = VtdΛF (t), V0 = I has a unique (strong)
solution. Notation: V F .

Bounded QS generators

C0(h, k) := {F ∈ B(h ⊕ (h ⊗ k)) : r(F ) ≤ 0},

r(f ) := F ∗ + F + F ∗∆F ≤ 0 ≤ 0 iff q(F ) := F + F ∗ + F∆F ∗ ≤ 0.

Theorem

The map F 7→ V F restricts to a bijection

C0(h, k) → QScCM.reg(h, k).
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Definition

The induced QS cocycle on B(h) and its associated semigroups are
defined respectively by(

kV
t : x 7→ Ṽ (x ⊗ IF )Ṽ ∗

)
t≥0

;
(
Qc,d

t : x 7→ E0

[
(V c

t )∗(x ⊗ IF )V d
t

])
t≥0

.

Remarks

kV
t (Ih) = RtV

∗
t VtRt and E0

[
kV
t (x)

]
= E0

[
V ∗

t (x ⊗ IF )Vt

]

Theorem

Let T be a total subset of k containing 0. Then TFAE:

(i) kV is unital (equivalently V is isometric);

(ii) Qc,c is conservative for all c ∈ T.
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Holomorphic contraction semigroups on h

Theorem (Ouhabaz)

On h, there is a trijective correspondence between

(i) semisectorial, maximal accretive operators −G;

(ii) closed, densely defined, semisectorial, accretive quadratic

forms (q,Q);

(iii) holomorphic contraction semigroups P ;

such that P is the semigroup generated by G, (q,Q) is the

form-generator of P, and −G is the closed operator associated

with (q,Q):

Ptv = lim
n→∞

(I − n−1tG )−nv (v ∈ h),

Q =
{

v ∈ h : sup
t>0

t−1 Re〈v , (I − Pt)v〉 < ∞
}

q[v ] = lim
t→0+

t−1〈v , (I − Pt)v〉

Dom G = {v ∈ Q : ∃v ′∈h∀u∈Q 〈u, v ′〉 = −q(u, v)}, Gv = v ′.
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Some definitions

For a quadratic form q on h with domain Q,

(q,Q) is accretive if

Re q[v ] ≥ 0, v ∈ Q.

For an accretive quadratic form (q,Q),

An inner-product norm on Q is given by

‖v‖q := (Re q[v ] + ‖v‖2)1/2;

(q,Q) is closed if Q is complete in the norm ‖·‖q ;

(q,Q) is semisectorial if there is C ≥ 0 such that

| Im q[v ]| ≤ C‖v‖q, v ∈ Q.

Set XHol
2 (h, k) equal to

{(K ,L) ∈ X2(h, k) : −K is semisectorial and Dom L = Q}

where Q is the domain of the quadratic form associated with K .
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Definition

We call V ∈ QScC(h, k) holomorphic if its expectation semigroup
is holomorphic.
Write QScCHol(h, k) for the collection of these.

Thus
QScCM.reg(h, k) ⊂ QScCHol(h, k),

and
Ṽ is homolorphic if and only if V is.
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Theorem

Let V ∈ QScCHol(h, k). Then V is nonsingular.

Therefore V has an associated quadruple

FV = (KV ,LV , L̃V ,CV − Ih⊗k).

Theorem

Let V ∈ QScCHol(h, k). Then each of its

(associated semigroups Qc,d is holomorphic, and so each of its)
associated cocycles V c,d is holomorphic.
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Set XHol
4 (h, k) equal to the set of quadruples F = (K ,L, L̃,C − I )

such that

−K is a maximal accretive and semisectorial operator on h,

L, L̃ are operators from h to h ⊗ k with domain Q,

C is a contraction in B(h ⊗ k),

‖∆F ζ‖2 ≤ 2Re Γ[ζ],

where, in terms of the form-generator (γ,Q) of the expectation
semigroup of V ,

DomΓ = Dom∆F = Q⊕ (h ⊗ k),

Γ[ζ] = γ[v ] − {〈ξ,Lv〉 + 〈L̃v , ξ〉 + 〈ξ, (C − I )ξ〉} for ζ =

(
v

ξ

)
,

∆F =

[
0 0
L C − I

]
.
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We have the inclusion

XHol
4 (h, k) ⊃

{
(K ,L,M∗,C − I ) :

[
K M
L C−I

]
∈ C0(h, k)

}

If (K ,L, L̃,C − I ) ∈ XHol
4 (h, k) then (K ,L) ∈ XHol

2 (h, k).

In the converse direction,
if (K ,L) ∈ XHol

2 (h, k) then, for any contraction C ∈ B(h ⊗ k),
we have

(K ,L,−C ∗L,C − I ) ∈ XHol
4 (h, k).

In particular, (K ,L,−L, 0), (K ,L, 0,−I ) ∈ XHol
4 (h, k).
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The stochastic generator of a homomorphic QS cocycle

Theorem

The prescription

V 7→ FV

defines a bijection

QScCHol(h, k) → XHol
4 (h, k),

‘extending’ the inverse of our earlier bijection

C0(h, k) → QScCM.reg(h, k), F 7→ V F .

This justifies the following definition.

Definition

For V ∈ QScCHol(h, k),
we refer to FV as the stochastic generator of V .
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Theorem

Let V ∈ QScCHol(h, k). Then

E0

[
V ∗

t (x ⊗ IF )Vt

]
= T K ,L

t (x), x ∈ B(h), t ≥ 0. (2)

where (K ,L) ∈ XHol
2 (h, k) is the truncation of the stochastic

generator of V to its first two components

[i.e. FV is of the form (K ,L, ∗, ∗)].

Corollary

Let (K ,L) ∈ XHol
2 (h, k). Then, letting V = V F, where

F = (K ,L,−C ∗L,C − I ) for a contraction C ∈ B(h ⊗ k), e.g.

F = (K ,L,−L, 0), (2) holds.
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