Holomorphic quantum stochastic cocycles & dilation of minimal quantum dynamical semigroups

J. Martin Lindsay

Lancaster University, U.K.

Quantum Probability & Related Topics ICM Satellite Conference, Bangalore, 14-17 August, 2010

- 1 Quantum dynamical semigroups: Minimality
- 2 QS cocycles: Examples, constructions, associated operators
- 3 Holomorphic contraction semigroups
- 4 Holomorphic QS cocycles: Generation & characterisation
- 5 Dilation of minimal quantum dynamical semigroups

- < ロ > < 団 > < 臣 > < 臣 > 臣 の Q ()

Setup 1/3

• \mathfrak{h} a fixed Hilbert space.

Setup 1/3

• \mathfrak{h} a fixed Hilbert space.

Definition: Quantum dynamical semigroup on $B(\mathfrak{h})$

Setup 1/3

• h a fixed Hilbert space.

Definition: Quantum dynamical semigroup on $B(\mathfrak{h})$

A pointwise ultraweakly continuous semigroup $\mathcal{T} = (\mathcal{T}_t)_{t \ge 0}$ of normal, completely positive, contractions on $B(\mathfrak{h})$;

Setup 1/3

• h a fixed Hilbert space.

Definition: Quantum dynamical semigroup on $B(\mathfrak{h})$

A pointwise ultraweakly continuous semigroup $\mathcal{T} = (\mathcal{T}_t)_{t \ge 0}$ of normal, completely positive, contractions on $B(\mathfrak{h})$; it is called *conservative* if it is identity preserving.

Setup 1/3

• h a fixed Hilbert space.

Definition: Quantum dynamical semigroup on $B(\mathfrak{h})$

A pointwise ultraweakly continuous semigroup $\mathcal{T} = (\mathcal{T}_t)_{t \ge 0}$ of normal, completely positive, contractions on $B(\mathfrak{h})$; it is called *conservative* if it is identity preserving.

Theorem (Lindblad, Gorini-Kossakowski-Sudarshan)

Setup 1/3

• h a fixed Hilbert space.

Definition: Quantum dynamical semigroup on $B(\mathfrak{h})$

A pointwise ultraweakly continuous semigroup $\mathcal{T} = (\mathcal{T}_t)_{t \ge 0}$ of normal, completely positive, contractions on $B(\mathfrak{h})$; it is called *conservative* if it is identity preserving.

Theorem (Lindblad, Gorini-Kossakowski-Sudarshan)

The norm-continuous QDS's are $(e^{t\mathcal{L}})_{t\geq 0}$ where $\mathcal{L}: x \mapsto x K + K^* x + L^*(x \otimes I_k)L$, and

Setup 1/3

• h a fixed Hilbert space.

Definition: Quantum dynamical semigroup on $B(\mathfrak{h})$

A pointwise ultraweakly continuous semigroup $\mathcal{T} = (\mathcal{T}_t)_{t \ge 0}$ of normal, completely positive, contractions on $B(\mathfrak{h})$; it is called *conservative* if it is identity preserving.

Theorem (Lindblad, Gorini-Kossakowski-Sudarshan)

The norm-continuous QDS's are $(e^{t\mathcal{L}})_{t\geq 0}$ where $\mathcal{L}: x \mapsto x K + K^* x + L^*(x \otimes I_k)L$, and $K + K^* + L^*L \leq 0$,

Setup 1/3

• h a fixed Hilbert space.

Definition: Quantum dynamical semigroup on $B(\mathfrak{h})$

A pointwise ultraweakly continuous semigroup $\mathcal{T} = (\mathcal{T}_t)_{t \ge 0}$ of normal, completely positive, contractions on $B(\mathfrak{h})$; it is called *conservative* if it is identity preserving.

Theorem (Lindblad, Gorini-Kossakowski-Sudarshan)

The norm-continuous QDS's are $(e^{t\mathcal{L}})_{t\geq 0}$ where $\mathcal{L}: x \mapsto x K + K^* x + L^*(x \otimes I_k)L$, and $K + K^* + L^*L \leq 0$,

for a Hilbert space k and operators $K \in B(\mathfrak{h})$ and $L \in B(\mathfrak{h}; \mathfrak{h} \otimes k)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ○ ○ ○ ○

Setup 2/3

• h and k, two fixed Hilbert spaces

Setup 2/3

- $\bullet~\mathfrak{h}$ and k, two fixed Hilbert spaces
- $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathsf{k})$, that is

K is the generator of a contractive C_0 -semigroup on \mathfrak{h} ;

Setup 2/3

- $\bullet~\mathfrak{h}$ and k, two fixed Hilbert spaces
- $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathsf{k})$, that is

K is the generator of a contractive C_0 -semigroup on \mathfrak{h} ;

L is an operator from \mathfrak{h} to $\mathfrak{h}\otimes k,$ such that

Setup 2/3

- h and k, two fixed Hilbert spaces
- $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathfrak{k})$, that is K is the generator of a contractive C_0 -semigroup on \mathfrak{h} ; L is an operator from \mathfrak{h} to $\mathfrak{h} \otimes k$, such that

Dom $L \supset$ Dom K; $||Lv||^2 + 2 \operatorname{Re}\langle v, Kv \rangle \leq 0$, $v \in$ Dom K.

Setup 2/3

- $\bullet~\mathfrak{h}$ and k, two fixed Hilbert spaces
- (K, L) ∈ X(h, k), that is K is the generator of a contractive C₀-semigroup on h; L is an operator from h to h ⊗ k, such that Dom L ⊃ Dom K; ||Lv||² + 2 Re⟨v, Kv⟩ ≤ 0, v ∈ Dom K.
 Associated quadratic forms: for x ∈ B(h),

 $\mathcal{L}_{\mathcal{K},L}(x)[v] := \langle v, x \, \mathcal{K}v \rangle + \langle \mathcal{K}v, xv \rangle + \langle Lv, x \otimes I_k \, Lv \rangle, \ v \in \mathsf{Dom} \, \mathcal{K}.$

Setup 2/3

- $\bullet~\mathfrak{h}$ and k, two fixed Hilbert spaces
- (K, L) ∈ X(h, k), that is K is the generator of a contractive C₀-semigroup on h; L is an operator from h to h ⊗ k, such that Dom L ⊃ Dom K; ||Lv||² + 2 Re⟨v, Kv⟩ ≤ 0, v ∈ Dom K.
 Associated quadratic forms: for x ∈ B(h).
 - $\mathcal{L}_{K,L}(x)[v] := \langle v, x \, Kv \rangle + \langle Kv, xv \rangle + \langle Lv, x \otimes I_k \, Lv \rangle, \ v \in \mathsf{Dom} \, K.$

Setup 2/3

- \mathfrak{h} and k, two fixed Hilbert spaces
- (K, L) ∈ X(h, k), that is
 K is the generator of a contractive C₀-semigroup on h;
 L is an operator from h to h ⊗ k, such that
 Dom L ⊃ Dom K; ||Lv||² + 2 Re⟨v, Kv⟩ ≤ 0, v ∈ Dom K.
- Associated quadratic forms: for $x \in B(\mathfrak{h})$,

 $\mathcal{L}_{\mathcal{K},L}(x)[v] := \langle v, x \, \mathcal{K}v \rangle + \langle \mathcal{K}v, xv \rangle + \langle Lv, x \otimes I_k \, Lv \rangle, \ v \in \mathsf{Dom} \, \mathcal{K}.$

Definition (Minimal QDS \mathcal{T} for $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathsf{k})$)

(i) For all $x \in B(\mathfrak{h})$ and $v \in \text{Dom } K$,

Setup 2/3

- \mathfrak{h} and k, two fixed Hilbert spaces
- (K, L) ∈ X(h, k), that is
 K is the generator of a contractive C₀-semigroup on h;
 L is an operator from h to h ⊗ k, such that
 Dom L ⊃ Dom K; ||Lv||² + 2 Re⟨v, Kv⟩ ≤ 0, v ∈ Dom K.
- Associated quadratic forms: for $x \in B(\mathfrak{h})$,

 $\mathcal{L}_{\mathcal{K},L}(x)[v] := \langle v, x \, \mathcal{K}v \rangle + \langle \mathcal{K}v, xv \rangle + \langle Lv, x \otimes I_k \, Lv \rangle, \ v \in \mathsf{Dom} \, \mathcal{K}.$

(i) For all
$$x \in B(\mathfrak{h})$$
 and $v \in \text{Dom } K$,
 $\langle v, \mathcal{T}_t(x)v \rangle = \langle v, xv \rangle + \int_0^t ds \, \mathcal{L}_{K,L}(\mathcal{T}_s(x)[v].$ (1)

Setup 2/3

- \mathfrak{h} and k, two fixed Hilbert spaces
- (K, L) ∈ X(h, k), that is
 K is the generator of a contractive C₀-semigroup on h;
 L is an operator from h to h ⊗ k, such that
 Dom L ⊃ Dom K; ||Lv||² + 2 Re⟨v, Kv⟩ ≤ 0, v ∈ Dom K.
- Associated quadratic forms: for $x \in B(\mathfrak{h})$,

 $\mathcal{L}_{\mathcal{K},L}(x)[v] := \langle v, x \, \mathcal{K}v \rangle + \langle \mathcal{K}v, xv \rangle + \langle Lv, x \otimes I_k \, Lv \rangle, \ v \in \mathsf{Dom} \, \mathcal{K}.$

Setup 2/3

- \mathfrak{h} and k, two fixed Hilbert spaces
- (K, L) ∈ X(h, k), that is
 K is the generator of a contractive C₀-semigroup on h;
 L is an operator from h to h ⊗ k, such that
 Dom L ⊃ Dom K; ||Lv||² + 2 Re⟨v, Kv⟩ ≤ 0, v ∈ Dom K.
- Associated quadratic forms: for $x \in B(\mathfrak{h})$,

 $\mathcal{L}_{\mathcal{K},L}(x)[v] := \langle v, x \, \mathcal{K}v \rangle + \langle \mathcal{K}v, xv \rangle + \langle Lv, x \otimes I_k \, Lv \rangle, \ v \in \mathsf{Dom} \, \mathcal{K}.$

(i) For all
$$x \in B(\mathfrak{h})$$
 and $v \in \text{Dom } K$,
 $\langle v, \mathcal{T}_t(x)v \rangle = \langle v, xv \rangle + \int_0^t ds \mathcal{L}_{K,L}(\mathcal{T}_s(x)[v]).$ (1)
(ii) For any other QDS \mathcal{T}' satisfying (1),
 $\mathcal{T}_t(x) \leq \mathcal{T}'_t(x),$ for all $t \in \mathbb{R}_+, x \in B(\mathfrak{h})_+.$

Existence of minimal QDS's

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ○ ○ ○ ○

Theorem (Davies, after Kato and Feller)

Theorem (Davies, after Kato and Feller)

Let $(K, L) \in \mathfrak{X}(\mathfrak{h}, \mathsf{k})$. Then there is a unique minimal QDS $\mathcal{T}^{K,L}$ associated to (K, L).

Theorem (Davies, after Kato and Feller)

Let $(K, L) \in \mathfrak{X}(\mathfrak{h}, k)$. Then there is a unique minimal QDS $\mathcal{T}^{K,L}$ associated to (K, L). If $\mathcal{T}^{K,L}$ is conservative then $\mathcal{L}_{(K,L)}(1) = 0$, in other words

$$||Lv||^2 + 2 \operatorname{Re}\langle v, Kv \rangle = 0, \quad v \in \operatorname{Dom} K.$$

Setup

< 日 > < 四 > < 回 > < 回 > < 回 > <

æ

• h and k, two fixed Hilbert spaces

 $\bullet~\mathfrak{h}$ and k, two fixed Hilbert spaces

▶ ▲ 문 ▶ ▲

æ

• $\mathcal{F} := \Gamma(L^2(\mathbb{R}_+; \mathsf{k}))$

 $\bullet~\mathfrak{h}$ and k, two fixed Hilbert spaces

•
$$\mathcal{F} := \Gamma(L^2(\mathbb{R}_+; \mathsf{k}))$$

•
$$\varpi(f) := \exp(-\|f\|^2/2)\varepsilon(f), f \in L^2(\mathbb{R}_+;\mathsf{k})$$

æ

@▶ ∢ ≣▶

 $\bullet~\mathfrak{h}$ and k, two fixed Hilbert spaces

•
$$\mathcal{F} := \Gamma(L^2(\mathbb{R}_+; \mathsf{k}))$$

•
$$\varpi(f) := \exp(-\|f\|^2/2)\varepsilon(f), f \in L^2(\mathbb{R}_+;\mathsf{k})$$

•
$$\Delta := \begin{bmatrix} 0_{\mathfrak{h}} \\ I_{\mathfrak{h} \otimes \mathsf{k}} \end{bmatrix} \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes \mathsf{k})), \ \binom{z}{c} \mapsto \binom{0}{c}$$

 $\bullet~\mathfrak{h}$ and k, two fixed Hilbert spaces

•
$$\mathcal{F} := \Gamma(L^2(\mathbb{R}_+; \mathsf{k}))$$

•
$$\varpi(f) := \exp(-\|f\|^2/2)\varepsilon(f), f \in L^2(\mathbb{R}_+;\mathsf{k})$$

•
$$\Delta := \begin{bmatrix} 0_{\mathfrak{h}} & \\ & I_{\mathfrak{h} \otimes \mathsf{k}} \end{bmatrix} \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes \mathsf{k})), \ \binom{z}{c} \mapsto \binom{0}{c}$$

 $\mathcal{F} = \mathcal{F}_{[0,r[} \otimes \mathcal{F}_{[r,t[} \otimes \mathcal{F}_{[t,\infty[}, \text{ where } \mathcal{F}_{[r,t[} := \Gamma(L^2([r,t[;k))$

- * ロ * * @ * * 差 * * 差 * うへの

Definition

 $V = (V_t)_{t \geq 0}$ contractions in $B(\mathfrak{h} \otimes \mathcal{F})$ satisfying

•
$$V_{s+t} = V_s \sigma_s(V_t)$$
 and $V_0 = I$

•
$$V_t \in B(\mathfrak{h} \otimes \mathcal{F}_{[0,t[}) \otimes I_{[t,\infty[}))$$

• $t \mapsto V_t$ is strongly continuous

Definition

 $V = (V_t)_{t \geq 0}$ contractions in $B(\mathfrak{h} \otimes \mathcal{F})$ satisfying

•
$$V_{s+t} = V_s \sigma_s(V_t)$$
 and $V_0 = I$

•
$$V_t \in B(\mathfrak{h} \otimes \mathcal{F}_{[0,t[}) \otimes I_{[t,\infty[}))$$

• $t \mapsto V_t$ is strongly continuous

 $\sigma_{s}(V_{t}) \in B(\mathfrak{h}) \otimes I_{[0,s[} \overline{\otimes} B(\mathcal{F}_{[s,s+t[}) \otimes I_{[s+t,\infty[}$

Definition

 $V = (V_t)_{t \geq 0}$ contractions in $B(\mathfrak{h} \otimes \mathcal{F})$ satisfying

•
$$V_{s+t} = V_s \sigma_s(V_t)$$
 and $V_0 = I$

•
$$V_t \in B(\mathfrak{h} \otimes \mathcal{F}_{[0,t[}) \otimes I_{[t,\infty[}))$$

• $t \mapsto V_t$ is strongly continuous

 $\sigma_{s}(V_{t}) \in B(\mathfrak{h}) \otimes I_{[0,s[} \overline{\otimes} B(\mathcal{F}_{[s,s+t[}) \otimes I_{[s+t,\infty[}$

Notation: $\mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$

Quantum stochastic (QS) contraction cocycles on \mathfrak{h}

Definition

 $V = (V_t)_{t \geq 0}$ contractions in $B(\mathfrak{h} \otimes \mathcal{F})$ satisfying

•
$$V_{s+t} = V_s \sigma_s(V_t)$$
 and $V_0 = I$

•
$$V_t \in B(\mathfrak{h} \otimes \mathcal{F}_{[0,t[}) \otimes I_{[t,\infty[}))$$

• $t \mapsto V_t$ is strongly continuous

$$\sigma_{s}(V_{t}) \in B(\mathfrak{h}) \otimes I_{[0,s[} \overline{\otimes} B(\mathcal{F}_{[s,s+t[}) \otimes I_{[s+t,\infty[}$$

Notation: $\mathbb{QS}_{c}\mathbb{C}(\mathfrak{h}, \mathsf{k})$

Expectation semigroup of V

$$Q^{0,0} := (\mathbb{E}_0[V_t])_{t \ge 0} \quad \text{where } \mathbb{E}_s := \mathsf{id}_{B(\mathfrak{h} \otimes \mathcal{F}_{[0,s[})} \ \overline{\otimes} \, \omega_{\varepsilon(\mathfrak{0}_{[s,\infty[})}.$$

Quantum stochastic (QS) contraction cocycles on \mathfrak{h}

Definition

 $V = (V_t)_{t \geq 0}$ contractions in $B(\mathfrak{h} \otimes \mathcal{F})$ satisfying

•
$$V_{s+t} = V_s \sigma_s(V_t)$$
 and $V_0 = I$

•
$$V_t \in B(\mathfrak{h} \otimes \mathcal{F}_{[0,t[}) \otimes I_{[t,\infty[}))$$

• $t \mapsto V_t$ is strongly continuous

$$\sigma_{s}(V_{t}) \in B(\mathfrak{h}) \otimes I_{[0,s[} \overline{\otimes} B(\mathcal{F}_{[s,s+t[}) \otimes I_{[s+t,\infty[}$$

Notation: $\mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$

Expectation semigroup of V

$$Q^{0,0} := (\mathbb{E}_0[V_t])_{t \ge 0} \quad \text{where } \mathbb{E}_s := \mathsf{id}_{B(\mathfrak{h} \otimes \mathcal{F}_{[0,s[})} \ \overline{\otimes} \, \omega_{\varepsilon(0_{[s,\infty[})}.$$

 $\mathbb{E}_0 = \mathbb{E}_0 \circ \mathbb{E}_s$ and $\mathbb{E}_s \circ \sigma_s = \mathbb{E}_0$.

◆ロ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ◆ 臣 → � � �

æ

Example 0: $V := (P_t \otimes I_F)_{t \ge 0}$

æ

(本部) (本語) (本語)

Example 0: $V := (P_t \otimes I_F)_{t \ge 0}$

where $P = (P_t)_{t \ge 0}$ is a contractive C_0 -semigroup on \mathfrak{h} .

Example 0: $V := (P_t \otimes I_F)_{t \ge 0}$

where $P = (P_t)_{t \ge 0}$ is a contractive C_0 -semigroup on \mathfrak{h} .

Example 0: $V := (P_t \otimes I_F)_{t \ge 0}$

where $P = (P_t)_{t \ge 0}$ is a contractive C_0 -semigroup on \mathfrak{h} .

Example 1: $V := (e^{iH\otimes M_{B_t}})_{t\geq 0}$

where H is a selfadjoint operator on \mathfrak{h} ,

Example 0: $V := (P_t \otimes I_F)_{t \ge 0}$

where $P = (P_t)_{t \ge 0}$ is a contractive C_0 -semigroup on \mathfrak{h} .

白 ト イヨト イヨト

Example 1: $V := (e^{iH \otimes M_{B_t}})_{t \ge 0}$

where *H* is a selfadjoint operator on \mathfrak{h} , $B = (B_t)_{t>0}$ is a Brownian motion, and

Example 0: $V := (P_t \otimes I_F)_{t \ge 0}$

where $P = (P_t)_{t \ge 0}$ is a contractive C_0 -semigroup on \mathfrak{h} .

Example 1: $V := (e^{iH \otimes M_{B_t}})_{t \ge 0}$

where H is a selfadjoint operator on \mathfrak{h} , $B = (B_t)_{t \ge 0}$ is a Brownian motion, and $L^2(\mathcal{W}) \cong \mathcal{F}$ (Wiener-Segal-Itô isomorphism).

Example 0: $V := (P_t \otimes I_F)_{t \ge 0}$

where $P = (P_t)_{t \ge 0}$ is a contractive C_0 -semigroup on \mathfrak{h} .

Example 1: $V := (e^{iH \otimes M_{B_t}})_{t \ge 0}$

where H is a selfadjoint operator on \mathfrak{h} , $B = (B_t)_{t \ge 0}$ is a Brownian motion, and $L^2(\mathcal{W}) \cong \mathcal{F}$ (Wiener-Segal-Itô isomorphism).

Example 2: Weyl cocycles, $W^c := (I_{\mathfrak{h}} \otimes W(c_{[0,t[}))_{t \ge 0} \ (c \in \mathsf{k}))$

Example 0: $V := (P_t \otimes I_F)_{t \ge 0}$

where $P = (P_t)_{t \ge 0}$ is a contractive C_0 -semigroup on \mathfrak{h} .

Example 1: $V := (e^{iH \otimes M_{B_t}})_{t \ge 0}$

where H is a selfadjoint operator on \mathfrak{h} , $B = (B_t)_{t \ge 0}$ is a Brownian motion, and $L^2(\mathcal{W}) \cong \mathcal{F}$ (Wiener-Segal-Itô isomorphism).

Example 2: Weyl cocycles, $W^c := \left(I_{\mathfrak{h}} \otimes W(c_{[0,t[}))_{t \geq 0} \ (c \in \mathsf{k})\right)$

where W(f) is the (unitary) Fock-Weyl operator

Example 0: $V := (P_t \otimes I_F)_{t \ge 0}$

where $P = (P_t)_{t \ge 0}$ is a contractive C_0 -semigroup on \mathfrak{h} .

Example 1: $V := (e^{iH \otimes M_{B_t}})_{t \ge 0}$

where H is a selfadjoint operator on \mathfrak{h} , $B = (B_t)_{t \ge 0}$ is a Brownian motion, and $L^2(\mathcal{W}) \cong \mathcal{F}$ (Wiener-Segal-Itô isomorphism).

Example 2: Weyl cocycles, $W^c := (I_{\mathfrak{h}} \otimes W(c_{[0,t[}))_t >_0 (c \in \mathsf{k}))$

where W(f) is the (unitary) Fock-Weyl operator determined by

$$W(f)\varpi(g) = e^{-i \operatorname{Im}\langle f,g \rangle} \varpi(f+g), \quad g \in L^2(\mathbb{R}_+;\mathsf{k}).$$

Example 0: $V := (P_t \otimes I_F)_{t \ge 0}$

where $P = (P_t)_{t \ge 0}$ is a contractive C_0 -semigroup on \mathfrak{h} .

Example 1: $V := (e^{iH \otimes M_{B_t}})_{t \ge 0}$

where H is a selfadjoint operator on \mathfrak{h} , $B = (B_t)_{t \ge 0}$ is a Brownian motion, and $L^2(\mathcal{W}) \cong \mathcal{F}$ (Wiener-Segal-Itô isomorphism).

Example 2: Weyl cocycles, $W^c := \left(I_{\mathfrak{h}} \otimes W(c_{[0,t[}))_t >_0 (c \in \mathsf{k})\right)$

where W(f) is the (unitary) Fock-Weyl operator determined by

$$W(f) arpi(g) = e^{-i \operatorname{Im}\langle f,g
angle} arpi(f+g), \quad g \in L^2(\mathbb{R}_+;\mathsf{k}).$$

 $W(c_{[0,r+t[}) = W(c_{[0,r[})W(c_{[r,r+t[})$

Example 0: $V := (P_t \otimes I_F)_{t \ge 0}$

where $P = (P_t)_{t \ge 0}$ is a contractive C_0 -semigroup on \mathfrak{h} .

Example 1: $V := (e^{iH \otimes M_{B_t}})_{t \ge 0}$

where H is a selfadjoint operator on \mathfrak{h} , $B = (B_t)_{t \ge 0}$ is a Brownian motion, and $L^2(\mathcal{W}) \cong \mathcal{F}$ (Wiener-Segal-Itô isomorphism).

Example 2: Weyl cocycles, $W^c := (I_{\mathfrak{h}} \otimes W(c_{[0,t[}))_t >_0 (c \in \mathsf{k}))$

where W(f) is the (unitary) Fock-Weyl operator determined by

$$W(f) arpi(g) = e^{-i \operatorname{Im} \langle f, g \rangle} arpi(f+g), \quad g \in L^2(\mathbb{R}_+; \mathsf{k}).$$

 $W(c_{[0,r+t[}) = W(c_{[0,r[})W(c_{[r,r+t[}) \& W(c_{[r,r+t[}) = \sigma_r(W(c_{[0,t[})).$

- * ロ * * @ * * 差 * * 差 * うへの

Definition (Associated cocycles)

Definition (Associated cocycles)

For $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$, $V^{c,d} := ((W_t^c)^* V_t W_t^d)_{t \ge 0}, \quad c, d \in \mathsf{k}.$

Definition (Associated cocycles)

For
$$V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h},\mathsf{k})$$
,
 $V^{c,d} := \left((W_t^c)^* V_t W_t^d \right)_{t \ge 0}, \quad c, d \in \mathsf{k}.$

 $\sigma_r(V_t) \smile I_{\mathfrak{h}} \otimes W(e_{[0,r[}) \text{ in } B(\mathfrak{h}) \otimes \mathcal{F}_{[0,r[} \otimes \mathcal{F}_{[r,\infty[}.$

Definition (Associated cocycles)

For
$$V \in \mathbb{QS}_c \mathbb{C}(\mathfrak{h}, \mathsf{k})$$
,
 $V^{c,d} := ((W_t^c)^* V_t W_t^d)_{t \ge 0}, \quad c, d \in \mathsf{k}.$

 $\sigma_r(V_t) \smile I_{\mathfrak{h}} \otimes W(e_{[0,r[}) \text{ in } B(\mathfrak{h}) \otimes \mathcal{F}_{[0,r[} \otimes \mathcal{F}_{[r,\infty[}.$

Definition (Dual cocycle)

For
$$V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h},\mathsf{k})$$
,
 $V^{c,d} := \left((W_t^c)^* V_t W_t^d \right)_{t \ge 0}, \quad c, d \in \mathsf{k}.$

 $\sigma_r(V_t) \smile I_{\mathfrak{h}} \otimes W(e_{[0,r[}) \text{ in } B(\mathfrak{h}) \otimes \mathcal{F}_{[0,r[} \otimes \mathcal{F}_{[r,\infty[}.$

Definition (Dual cocycle)

For $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h},\mathsf{k})$,

$$\widetilde{V}:=ig((\mathit{I}_\mathfrak{h}\otimes \mathit{R}_t)\mathit{V}_t^*(\mathit{I}_\mathfrak{h}\otimes \mathit{R}_t)ig)_{t>0}$$

For
$$V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h},\mathsf{k})$$
,
 $V^{c,d} := \left((W_t^c)^* V_t W_t^d \right)_{t \ge 0}, \quad c, d \in \mathsf{k}.$

 $\sigma_r(V_t) \smile I_{\mathfrak{h}} \otimes W(e_{[0,r[}) \text{ in } B(\mathfrak{h}) \otimes \mathcal{F}_{[0,r[} \otimes \mathcal{F}_{[r,\infty[}.$

Definition (Dual cocycle)

For $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h},\mathsf{k})$,

$$\widetilde{V} := \left((I_{\mathfrak{h}} \otimes R_t) V_t^* (I_{\mathfrak{h}} \otimes R_t) \right)_{t \geq 0}$$

where R_t is the (unitary) time-reversal operator

For
$$V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h},\mathsf{k})$$
,
 $V^{c,d} := \left((W_t^c)^* V_t W_t^d \right)_{t \ge 0}, \quad c, d \in \mathsf{k}.$

 $\sigma_r(V_t) \smile I_{\mathfrak{h}} \otimes W(e_{[0,r[}) \text{ in } B(\mathfrak{h}) \otimes \mathcal{F}_{[0,r[} \otimes \mathcal{F}_{[r,\infty[}.$

Definition (Dual cocycle)

For $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$,

$$\widetilde{V} := \left((I_{\mathfrak{h}} \otimes R_t) V_t^* (I_{\mathfrak{h}} \otimes R_t) \right)_{t \geq 0}$$

where R_t is the (unitary) *time-reversal operator* determined by $R_t \varepsilon(f) := \varepsilon(r_t f), \quad f \in L^2(\mathbb{R}_+; k)$

For
$$V \in \mathbb{QS}_c \mathbb{C}(\mathfrak{h}, \mathsf{k})$$
,
 $V^{c,d} := \left((W_t^c)^* V_t W_t^d \right)_{t \ge 0}, \quad c, d \in \mathsf{k}.$

 $\sigma_r(V_t) \smile I_{\mathfrak{h}} \otimes W(e_{[0,r[}) \text{ in } B(\mathfrak{h}) \otimes \mathcal{F}_{[0,r[} \otimes \mathcal{F}_{[r,\infty[}.$

Definition (Dual cocycle)

For $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$,

$$\widetilde{V} := \left((I_{\mathfrak{h}} \otimes R_t) V_t^* (I_{\mathfrak{h}} \otimes R_t) \right)_{t \geq 0}$$

where R_t is the (unitary) *time-reversal operator* determined by $R_t \varepsilon(f) := \varepsilon(r_t f), \quad f \in L^2(\mathbb{R}_+; k)$ with $(r_t f)(s) := f(t - s)$ for $s \in [0, t[$ and := f(s) for $s \in [t, \infty[$.

Associated semigroups

- 《口》 《聞》 《臣》 《臣》 三臣 - のの()

Definition (Associated semigroups)

$$\begin{split} \mathsf{For} \ & V \in \mathbb{QS}_{c}\mathbb{C}(\mathfrak{h},\mathsf{k}), \\ & Q^{c,d} := \bigl((\mathsf{id}_{B(\mathfrak{h})} \ \overline{\otimes} \ \omega_{\varpi(c_{[0,t[}),\varpi(c_{[0,t[})})(V_{t}))_{t \geq 0}) \\ & = \bigl(\mathbb{E}_{0}[V_{t}^{c,d}]\bigr)_{t \geq 0}, \qquad c,d \in \mathsf{k}. \end{split}$$

- 《口》 《聞》 《臣》 《臣》 三臣 - のの()

Isometric embeddings: $\mathfrak{h} \otimes \mathsf{k} \to \mathfrak{h} \otimes \mathsf{k} \otimes L^2(\mathbb{R}_+) \subset \mathfrak{h} \otimes \mathcal{F}$

Isometric embeddings: $\mathfrak{h} \otimes \mathsf{k} \to \mathfrak{h} \otimes \mathsf{k} \otimes L^2(\mathbb{R}_+) \subset \mathfrak{h} \otimes \mathcal{F}$

$$E_t:\xi\mapsto t^{-1/2}\xi\otimes 1_{[0,t[}\quad (t>0).$$

Isometric embeddings: $\mathfrak{h} \otimes \mathsf{k} \to \mathfrak{h} \otimes \mathsf{k} \otimes L^2(\mathbb{R}_+) \subset \mathfrak{h} \otimes \mathcal{F}$

$$E_t: \xi \mapsto t^{-1/2} \xi \otimes 1_{[0,t[} \quad (t>0).$$

Isometric embeddings: $\mathfrak{h} \otimes \mathsf{k} \to \mathfrak{h} \otimes \mathsf{k} \otimes L^2(\mathbb{R}_+) \subset \mathfrak{h} \otimes \mathcal{F}$

$$E_t: \xi \mapsto t^{-1/2} \xi \otimes \mathbb{1}_{[0,t[} \quad (t>0).$$

Associated operators and domains. Let $V \in \mathbb{QS}_{c}\mathbb{C}(\mathfrak{h}, \mathsf{k})$.

• $K_{c,d}^V$:= the generator of the (c, d)-associated semigroup of V

Isometric embeddings: $\mathfrak{h} \otimes \mathsf{k} \to \mathfrak{h} \otimes \mathsf{k} \otimes L^2(\mathbb{R}_+) \subset \mathfrak{h} \otimes \mathcal{F}$

$$E_t: \xi \mapsto t^{-1/2} \xi \otimes 1_{[0,t[} \quad (t>0).$$

- $K_{c,d}^V$:= the generator of the (c, d)-associated semigroup of V
- $L_d^V(t) := t^{-1/2} (E_t)^* V_t (I_{\mathfrak{h}} \otimes |\varepsilon(d_{[0,t[})\rangle))$

Isometric embeddings: $\mathfrak{h} \otimes \mathsf{k} \to \mathfrak{h} \otimes \mathsf{k} \otimes L^2(\mathbb{R}_+) \subset \mathfrak{h} \otimes \mathcal{F}$

$$E_t: \xi \mapsto t^{-1/2} \xi \otimes 1_{[0,t[} \quad (t>0).$$

- $K_{c,d}^V :=$ the generator of the (c, d)-associated semigroup of V
- $L_d^V(t) := t^{-1/2}(E_t)^* V_t(I_{\mathfrak{h}} \otimes |\varepsilon(d_{[0,t[})\rangle) \in B(\mathfrak{h};\mathfrak{h} \otimes \mathsf{k})$

Isometric embeddings: $\mathfrak{h} \otimes \mathsf{k} \to \mathfrak{h} \otimes \mathsf{k} \otimes L^2(\mathbb{R}_+) \subset \mathfrak{h} \otimes \mathcal{F}$

$$E_t: \xi \mapsto t^{-1/2} \xi \otimes \mathbb{1}_{[0,t[} \quad (t>0).$$

- $K_{c,d}^V :=$ the generator of the (c, d)-associated semigroup of V
- $L_d^V(t) := t^{-1/2}(E_t)^* V_t(I_{\mathfrak{h}} \otimes |\varepsilon(d_{[0,t[})\rangle) \in B(\mathfrak{h};\mathfrak{h} \otimes \mathsf{k})$
- $C^V(t) := I_{\mathfrak{h}\otimes\mathcal{F}} + (E_t)^*(V_t I_{\mathfrak{h}\otimes\mathcal{F}})E_t$

Isometric embeddings: $\mathfrak{h} \otimes \mathsf{k} \to \mathfrak{h} \otimes \mathsf{k} \otimes L^2(\mathbb{R}_+) \subset \mathfrak{h} \otimes \mathcal{F}$

$$E_t: \xi \mapsto t^{-1/2} \xi \otimes \mathbb{1}_{[0,t[} \quad (t>0).$$

•
$$L_d^V(t) := t^{-1/2}(E_t)^* V_t(I_{\mathfrak{h}} \otimes |\varepsilon(d_{[0,t[})\rangle) \in B(\mathfrak{h};\mathfrak{h} \otimes \mathsf{k})$$

•
$$C^{V}(t) := I_{\mathfrak{h}\otimes\mathcal{F}} + (E_t)^* (V_t - I_{\mathfrak{h}\otimes\mathcal{F}}) E_t = (E_t)^* V_t E_t$$

Isometric embeddings: $\mathfrak{h} \otimes \mathsf{k} \to \mathfrak{h} \otimes \mathsf{k} \otimes L^2(\mathbb{R}_+) \subset \mathfrak{h} \otimes \mathcal{F}$

$$E_t: \xi \mapsto t^{-1/2} \xi \otimes \mathbb{1}_{[0,t[} \quad (t>0).$$

•
$$L_d^V(t) := t^{-1/2}(E_t)^* V_t(I_{\mathfrak{h}} \otimes |\varepsilon(d_{[0,t[})\rangle) \in B(\mathfrak{h};\mathfrak{h} \otimes \mathsf{k})$$

•
$$C^V(t) := I_{\mathfrak{h}\otimes\mathcal{F}} + (E_t)^*(V_t - I_{\mathfrak{h}\otimes\mathcal{F}})E_t = (E_t)^*V_tE_t \in B(\mathfrak{h}\otimes\mathsf{k}).$$

Isometric embeddings: $\mathfrak{h} \otimes \mathsf{k} \to \mathfrak{h} \otimes \mathsf{k} \otimes L^2(\mathbb{R}_+) \subset \mathfrak{h} \otimes \mathcal{F}$

$$E_t: \xi \mapsto t^{-1/2} \xi \otimes 1_{[0,t[} \quad (t>0).$$

Associated operators and domains. Let $V \in \mathbb{QS}_{c}\mathbb{C}(\mathfrak{h}, \mathsf{k})$.

•
$$K_{c,d}^V :=$$
 the generator of the (c, d) -associated semigroup of V
• $L_d^V(t) := t^{-1/2}(E_t)^* V_t(I_{\mathfrak{h}} \otimes |\varepsilon(d_{[0,t[})\rangle) \in B(\mathfrak{h}; \mathfrak{h} \otimes \mathfrak{k})$
• $C^V(t) := I_{\mathfrak{h} \otimes \mathcal{F}} + (E_t)^* (V_t - I_{\mathfrak{h} \otimes \mathcal{F}}) E_t = (E_t)^* V_t E_t \in B(\mathfrak{h} \otimes \mathfrak{k}).$

Properties. Set $\mathcal{D}_d^V := \operatorname{Dom} K_{d,d}^V$

Isometric embeddings: $\mathfrak{h} \otimes \mathsf{k} \to \mathfrak{h} \otimes \mathsf{k} \otimes L^2(\mathbb{R}_+) \subset \mathfrak{h} \otimes \mathcal{F}$

$$E_t: \xi \mapsto t^{-1/2} \xi \otimes \mathbb{1}_{[0,t[} \quad (t>0).$$

Associated operators and domains. Let $V \in \mathbb{QS}_{c}\mathbb{C}(\mathfrak{h}, \mathsf{k})$.

•
$$K_{c,d}^V :=$$
 the generator of the (c, d) -associated semigroup of V
• $L_d^V(t) := t^{-1/2}(E_t)^* V_t(I_{\mathfrak{h}} \otimes |\varepsilon(d_{[0,t[})\rangle) \in B(\mathfrak{h}; \mathfrak{h} \otimes \mathfrak{k})$
• $C^V(t) := I_{\mathfrak{h} \otimes \mathcal{F}} + (E_t)^* (V_t - I_{\mathfrak{h} \otimes \mathcal{F}}) E_t = (E_t)^* V_t E_t \in B(\mathfrak{h} \otimes \mathfrak{k}).$

Properties. Set $\mathcal{D}_d^V := \operatorname{Dom} K_{d,d}^V$

• $(C^{V}(t))_{t>0}$ is a family of contractions in $B(\mathfrak{h} \otimes \mathsf{k})$.

Isometric embeddings: $\mathfrak{h} \otimes \mathsf{k} \to \mathfrak{h} \otimes \mathsf{k} \otimes L^2(\mathbb{R}_+) \subset \mathfrak{h} \otimes \mathcal{F}$

$$E_t: \xi \mapsto t^{-1/2} \xi \otimes 1_{[0,t[} \quad (t>0).$$

Associated operators and domains. Let $V \in \mathbb{QS}_{c}\mathbb{C}(\mathfrak{h}, \mathsf{k})$.

•
$$K_{c,d}^V :=$$
 the generator of the (c, d) -associated semigroup of V
• $L_d^V(t) := t^{-1/2}(E_t)^* V_t(I_{\mathfrak{h}} \otimes |\varepsilon(d_{[0,t[})\rangle) \in B(\mathfrak{h}; \mathfrak{h} \otimes \mathfrak{k})$
• $C^V(t) := I_{\mathfrak{h} \otimes \mathcal{F}} + (E_t)^* (V_t - I_{\mathfrak{h} \otimes \mathcal{F}}) E_t = (E_t)^* V_t E_t \in B(\mathfrak{h} \otimes \mathfrak{k}).$

Properties. Set $\mathcal{D}_d^V := \text{Dom } K_{d,d}^V$

- $(C^{V}(t))_{t>0}$ is a family of contractions in $B(\mathfrak{h} \otimes \mathsf{k})$.
- Dom $K_{c,d}^V = \mathcal{D}_d^V$ for all $c, d \in k$.

Isometric embeddings: $\mathfrak{h} \otimes \mathsf{k} \to \mathfrak{h} \otimes \mathsf{k} \otimes L^2(\mathbb{R}_+) \subset \mathfrak{h} \otimes \mathcal{F}$

$$E_t: \xi \mapsto t^{-1/2} \xi \otimes 1_{[0,t[} \quad (t>0).$$

Associated operators and domains. Let $V \in \mathbb{QS}_{c}\mathbb{C}(\mathfrak{h}, \mathsf{k})$.

•
$$K_{c,d}^V :=$$
 the generator of the (c, d) -associated semigroup of V
• $L_d^V(t) := t^{-1/2}(E_t)^* V_t(I_{\mathfrak{h}} \otimes |\varepsilon(d_{[0,t[})\rangle) \in B(\mathfrak{h}; \mathfrak{h} \otimes \mathfrak{k})$
• $C^V(t) := I_{\mathfrak{h} \otimes \mathcal{F}} + (E_t)^* (V_t - I_{\mathfrak{h} \otimes \mathcal{F}}) E_t = (E_t)^* V_t E_t \in B(\mathfrak{h} \otimes \mathfrak{k}).$

Properties. Set $\mathcal{D}_d^V := \text{Dom } K_{d,d}^V$

- $(C^{V}(t))_{t>0}$ is a family of contractions in $B(\mathfrak{h} \otimes \mathsf{k})$.
- Dom $K_{c,d}^V = \mathcal{D}_d^V$ for all $c, d \in k$.
- For all $v \in \mathcal{D}_d^V$, $L_d^V v := \lim_{t \to 0^+} L_d^V(t)v$ exists and $(\mathcal{K}_{c,d}^V, L_d^V) \in \mathfrak{X}(\mathfrak{h}, k)$:

Isometric embeddings: $\mathfrak{h} \otimes \mathsf{k} \to \mathfrak{h} \otimes \mathsf{k} \otimes L^2(\mathbb{R}_+) \subset \mathfrak{h} \otimes \mathcal{F}$

$$E_t: \xi \mapsto t^{-1/2} \xi \otimes 1_{[0,t[} \quad (t>0).$$

Associated operators and domains. Let $V \in \mathbb{QS}_{c}\mathbb{C}(\mathfrak{h}, \mathsf{k})$.

•
$$K_{c,d}^V :=$$
 the generator of the (c, d) -associated semigroup of V
• $L_d^V(t) := t^{-1/2}(E_t)^* V_t(I_{\mathfrak{h}} \otimes |\varepsilon(d_{[0,t[})\rangle) \in B(\mathfrak{h}; \mathfrak{h} \otimes \mathfrak{k})$
• $C^V(t) := I_{\mathfrak{h} \otimes \mathcal{F}} + (E_t)^* (V_t - I_{\mathfrak{h} \otimes \mathcal{F}}) E_t = (E_t)^* V_t E_t \in B(\mathfrak{h} \otimes \mathfrak{k}).$

Properties. Set $\mathcal{D}_d^V := \text{Dom } K_{d,d}^V$

- $(C^{V}(t))_{t>0}$ is a family of contractions in $B(\mathfrak{h} \otimes \mathsf{k})$.
- Dom $K_{c,d}^V = \mathcal{D}_d^V$ for all $c, d \in k$.

• For all
$$v \in \mathcal{D}_d^V$$
, $L_d^V v := \lim_{t \to 0^+} L_d^V(t)v$ exists and $(\mathcal{K}_{c,d}^V, L_d^V) \in \mathfrak{X}(\mathfrak{h}, k)$:
 $\|L_d^V v\|^2 + 2\operatorname{Re}\langle v, \mathcal{K}_{c,d}^V v \rangle \leq 0$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ○ ○ ○ ○

Definition

 $V \in \mathbb{QS}_{c}\mathbb{C}(\mathfrak{h},\mathsf{k})$ is *nonsingular* if $(C^{V}(t))_{t>0}$ converges as $t \to 0^{+}$ (W.O.T.).

白 ト イヨト イ

Definition

 $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ is *nonsingular* if $(C^V(t))_{t>0}$ converges as $t \to 0^+$ (W.O.T.). Write C^V for the limit.

I ≥ >

Definition

 $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ is nonsingular if $(C^V(t))_{t>0}$ converges as $t \to 0^+$ (W.O.T.). Write C^V for the limit.

Remark

If $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h},\mathsf{k})$ satisfies the QSDE $dV_t = V_t d\Lambda_F(t)$

Definition

 $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ is *nonsingular* if $(C^V(t))_{t>0}$ converges as $t \to 0^+$ (W.O.T.). Write C^V for the limit.

Remark

If $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ satisfies the QSDE $dV_t = V_t d\Lambda_F(t) = V_t (Kdt + LdA_t^* + MdA_t + (C - I)dN_t)$ for an operator $F = \begin{bmatrix} K & M \\ L & C - I \end{bmatrix}$

Definition

 $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ is *nonsingular* if $(C^V(t))_{t>0}$ converges as $t \to 0^+$ (W.O.T.). Write C^V for the limit.

Remark

If $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ satisfies the QSDE $dV_t = V_t d\Lambda_F(t) = V_t(Kdt + LdA_t^* + MdA_t + (C - I)dN_t)$ for an operator $F = \begin{bmatrix} K & M \\ L & C-I \end{bmatrix}$ (with dense domain of the form $\mathcal{D} \oplus (\mathcal{D} \underline{\otimes} \mathsf{D})$),

Definition

 $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ is *nonsingular* if $(C^V(t))_{t>0}$ converges as $t \to 0^+$ (W.O.T.). Write C^V for the limit.

Remark

If $V \in \mathbb{QS}_{c}\mathbb{C}(\mathfrak{h}, \mathsf{k})$ satisfies the QSDE $dV_{t} = V_{t}d\Lambda_{F}(t) = V_{t}(Kdt + LdA_{t}^{*} + MdA_{t} + (C - I)dN_{t})$ for an operator $F = \begin{bmatrix} K & M \\ L & C - I \end{bmatrix}$ (with dense domain of the form $\mathcal{D} \oplus (\mathcal{D} \underline{\otimes} D)$), then V is nonsingular and $C^{V} = C$.

Definition

 $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ is *nonsingular* if $(C^V(t))_{t>0}$ converges as $t \to 0^+$ (W.O.T.). Write C^V for the limit.

Remark

If $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ satisfies the QSDE $dV_t = V_t d\Lambda_F(t) = V_t(Kdt + LdA_t^* + MdA_t + (C - I)dN_t)$ for an operator $F = \begin{bmatrix} K & M \\ L & C - I \end{bmatrix}$ (with dense domain of the form $\mathcal{D} \oplus (\mathcal{D} \underline{\otimes} D)$), then V is nonsingular and $C^V = C$.

Associated quadruple

Let $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h},\mathsf{k})$ be nonsingular.

Definition

 $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ is *nonsingular* if $(C^V(t))_{t>0}$ converges as $t \to 0^+$ (W.O.T.). Write C^V for the limit.

Remark

If $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ satisfies the QSDE $dV_t = V_t d\Lambda_F(t) = V_t(Kdt + LdA_t^* + MdA_t + (C - I)dN_t)$ for an operator $F = \begin{bmatrix} K & M \\ L & C - I \end{bmatrix}$ (with dense domain of the form $\mathcal{D} \oplus (\mathcal{D} \underline{\otimes} D)$), then V is nonsingular and $C^V = C$.

Associated quadruple

Let $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ be nonsingular. Then \widetilde{V} is nonsingular and, with $K^V := K_{0,0}^V$, $L^V := L_0^V$ and $\widetilde{L}^V := L_0^{\widetilde{V}}$,

Definition

 $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ is *nonsingular* if $(C^V(t))_{t>0}$ converges as $t \to 0^+$ (W.O.T.). Write C^V for the limit.

Remark

If $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ satisfies the QSDE $dV_t = V_t d\Lambda_F(t) = V_t(Kdt + LdA_t^* + MdA_t + (C - I)dN_t)$ for an operator $F = \begin{bmatrix} K & M \\ L & C - I \end{bmatrix}$ (with dense domain of the form $\mathcal{D} \oplus (\mathcal{D} \underline{\otimes} D)$), then V is nonsingular and $C^V = C$.

Associated quadruple

Let $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ be nonsingular. Then \widetilde{V} is nonsingular and, with $K^V := K_{0,0}^V$, $L^V := L_0^V$ and $\widetilde{L}^V := L_0^{\widetilde{V}}$, we have an associated quadruple $\mathbb{F}^V := (K^V, L^V, \widetilde{L}^V, C^V - I)$.

- < ロ > < 回 > < 臣 > < 臣 > 三 三 の Q ()

Definition

 $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ is *Markov-regular* if its expectation semigroup is norm-continuous. Write $\mathbb{QS}_c\mathbb{C}_{\mathrm{M.reg}}(\mathfrak{h}, \mathsf{k})$ for this class.

Definition

 $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ is *Markov-regular* if its expectation semigroup is norm-continuous. Write $\mathbb{QS}_c\mathbb{C}_{\mathrm{M.reg}}(\mathfrak{h}, \mathsf{k})$ for this class.

Theorem. Let $F \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes \mathsf{k}))$.

Then the QSDE $dV_t = V_t d\Lambda_F(t)$, $V_0 = I$ has a unique (strong) solution. Notation: V^F .

Definition

 $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ is *Markov-regular* if its expectation semigroup is norm-continuous. Write $\mathbb{QS}_c\mathbb{C}_{\mathrm{M.reg}}(\mathfrak{h}, \mathsf{k})$ for this class.

Theorem. Let $F \in B(\mathfrak{h} \oplus \overline{(\mathfrak{h} \otimes \mathsf{k}))}$.

Then the QSDE $dV_t = V_t d\Lambda_F(t)$, $V_0 = I$ has a unique (strong) solution. Notation: V^F .

Bounded QS generators

$$C_0(\mathfrak{h},\mathsf{k}):=\{F\in B(\mathfrak{h}\oplus(\mathfrak{h}\otimes\mathsf{k})):r(F)\leq 0\},$$

Definition

 $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ is *Markov-regular* if its expectation semigroup is norm-continuous. Write $\mathbb{QS}_c\mathbb{C}_{\mathrm{M.reg}}(\mathfrak{h}, \mathsf{k})$ for this class.

Theorem. Let $F \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes \mathsf{k}))$.

Then the QSDE $dV_t = V_t d\Lambda_F(t)$, $V_0 = I$ has a unique (strong) solution. Notation: V^F .

Bounded QS generators

$$C_0(\mathfrak{h},\mathsf{k}):=\{F\in B(\mathfrak{h}\oplus(\mathfrak{h}\otimes\mathsf{k})):r(F)\leq 0\},$$

 $r(f) := F^* + F + F^* \Delta F \le 0 \le 0$

Definition

 $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ is *Markov-regular* if its expectation semigroup is norm-continuous. Write $\mathbb{QS}_c\mathbb{C}_{\mathrm{M.reg}}(\mathfrak{h}, \mathsf{k})$ for this class.

Theorem. Let $F \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes \mathsf{k}))$.

Then the QSDE $dV_t = V_t d\Lambda_F(t)$, $V_0 = I$ has a unique (strong) solution. Notation: V^F .

Bounded QS generators

$$C_0(\mathfrak{h},\mathsf{k}):=\{F\in B(\mathfrak{h}\oplus(\mathfrak{h}\otimes\mathsf{k})):r(F)\leq 0\},$$

 $r(f) := F^* + F + F^* \Delta F \le 0 \le 0$ iff $q(F) := F + F^* + F \Delta F^* \le 0$.

Definition

 $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ is *Markov-regular* if its expectation semigroup is norm-continuous. Write $\mathbb{QS}_c\mathbb{C}_{\mathrm{M.reg}}(\mathfrak{h}, \mathsf{k})$ for this class.

Theorem. Let $F \in B(\mathfrak{h} \oplus (\mathfrak{h} \otimes \mathsf{k}))$.

Then the QSDE $dV_t = V_t d\Lambda_F(t)$, $V_0 = I$ has a unique (strong) solution. Notation: V^F .

Bounded QS generators

$$C_0(\mathfrak{h},\mathsf{k}):=\{F\in B(\mathfrak{h}\oplus(\mathfrak{h}\otimes\mathsf{k})):r(F)\leq 0\},$$

 $r(f) := F^* + F + F^* \Delta F \le 0 \le 0 \text{ iff } q(F) := F + F^* + F \Delta F^* \le 0.$

Theorem

The map $F \mapsto V^F$ restricts to a bijection $C_0(\mathfrak{h}, \mathsf{k}) \to \mathbb{QS}_c\mathbb{C}_{\mathrm{M.reg}}(\mathfrak{h}, \mathsf{k}).$

- < ロ > < 部 > < 注 > < 注 > 三 - の Q ()

Definition

The induced QS cocycle on $B(\mathfrak{h})$ and its associated semigroups are defined respectively by

$$\left(k_t^V: x\mapsto \widetilde{V}(x\otimes I_{\mathcal{F}})\widetilde{V}^*\right)_{t\geq 0}$$

Definition

The *induced QS cocycle on* $B(\mathfrak{h})$ and its *associated semigroups* are defined respectively by

$$\begin{split} & \left(k_t^V : x \mapsto \widetilde{V}(x \otimes I_{\mathcal{F}})\widetilde{V}^*\right)_{t \ge 0}; \\ & \left(\mathcal{Q}_t^{c,d} : x \mapsto \mathbb{E}_0\left[(V_t^c)^*(x \otimes I_{\mathcal{F}})V_t^d\right]\right)_{t \ge 0} \end{split}$$

Definition

The induced QS cocycle on $B(\mathfrak{h})$ and its associated semigroups are defined respectively by

$$\begin{split} & \left(k_t^V : x \mapsto \widetilde{V}(x \otimes I_{\mathcal{F}})\widetilde{V}^*\right)_{t \ge 0}; \\ & \left(\mathcal{Q}_t^{c,d} : x \mapsto \mathbb{E}_0\left[(V_t^c)^*(x \otimes I_{\mathcal{F}})V_t^d\right]\right)_{t \ge 0} \end{split}$$

Remarks

 $k_t^V(I_{\mathfrak{h}}) = R_t V_t^* V_t R_t$

Definition

The induced QS cocycle on $B(\mathfrak{h})$ and its associated semigroups are defined respectively by

$$\begin{split} & \left(k_t^V : x \mapsto \widetilde{V}(x \otimes I_{\mathcal{F}})\widetilde{V}^*\right)_{t \ge 0}; \\ & \left(\mathcal{Q}_t^{c,d} : x \mapsto \mathbb{E}_0\left[(V_t^c)^*(x \otimes I_{\mathcal{F}})V_t^d\right]\right)_{t \ge 0}. \end{split}$$

Remarks

 $k_t^V(I_{\mathfrak{h}}) = R_t V_t^* V_t R_t$ and $\mathbb{E}_0[k_t^V(x)] = \mathbb{E}_0[V_t^*(x \otimes I_{\mathcal{F}})V_t]$

Definition

The induced QS cocycle on $B(\mathfrak{h})$ and its associated semigroups are defined respectively by

$$\begin{split} & \left(k_t^V : x \mapsto \widetilde{V}(x \otimes I_{\mathcal{F}})\widetilde{V}^*\right)_{t \ge 0}; \\ & \left(\mathcal{Q}_t^{c,d} : x \mapsto \mathbb{E}_0\left[(V_t^c)^*(x \otimes I_{\mathcal{F}})V_t^d\right]\right)_{t \ge 0}; \end{split}$$

Remarks

$$k_t^V(I_\mathfrak{h}) = R_t V_t^* V_t R_t$$
 and $\mathbb{E}_0ig[k_t^V(x)ig] = \mathbb{E}_0ig[V_t^*(x\otimes I_\mathcal{F})V_tig]$

Theorem

Let T be a total subset of k containing 0. Then TFAE:

Definition

The induced QS cocycle on $B(\mathfrak{h})$ and its associated semigroups are defined respectively by

$$\begin{split} & \left(k_t^V : x \mapsto \widetilde{V}(x \otimes I_{\mathcal{F}})\widetilde{V}^*\right)_{t \ge 0}; \\ & \left(\mathcal{Q}_t^{c,d} : x \mapsto \mathbb{E}_0\left[(V_t^c)^*(x \otimes I_{\mathcal{F}})V_t^d\right]\right)_{t \ge 0}; \end{split}$$

Remarks

$$k_t^V(I_\mathfrak{h}) = R_t V_t^* V_t R_t$$
 and $\mathbb{E}_0ig[k_t^V(x)ig] = \mathbb{E}_0ig[V_t^*(x\otimes I_\mathcal{F})V_tig]$

Theorem

Let T be a total subset of k containing 0. Then TFAE: (i) k^{V} is unital (equivalently V is isometric);

Definition

The induced QS cocycle on $B(\mathfrak{h})$ and its associated semigroups are defined respectively by

$$\begin{split} & \left(k_t^V : x \mapsto \widetilde{V}(x \otimes I_{\mathcal{F}})\widetilde{V}^*\right)_{t \ge 0}; \\ & \left(\mathcal{Q}_t^{c,d} : x \mapsto \mathbb{E}_0\left[(V_t^c)^*(x \otimes I_{\mathcal{F}})V_t^d\right]\right)_{t \ge 0}; \end{split}$$

Remarks

$$k_t^V(I_\mathfrak{h}) = R_t V_t^* V_t R_t$$
 and $\mathbb{E}_0ig[k_t^V(x)ig] = \mathbb{E}_0ig[V_t^*(x\otimes I_\mathcal{F})V_tig]$

Theorem

Let T be a total subset of k containing 0. Then TFAE: (i) k^V is unital (equivalently V is isometric); (ii) $Q^{c,c}$ is conservative for all $c \in T$.

- < ロ > < 団 > < 臣 > < 臣 > 三 - の < ()

Theorem (Ouhabaz)

On \mathfrak{h} , there is a trijective correspondence between

Theorem (Ouhabaz)

On \mathfrak{h} , there is a trijective correspondence between

(i) semisectorial, maximal accretive operators -G;

Theorem (Ouhabaz)

On $\mathfrak{h},$ there is a trijective correspondence between

- (i) semisectorial, maximal accretive operators -G;
- (ii) closed, densely defined, semisectorial, accretive quadratic forms (q, Q);

Theorem (Ouhabaz)

On $\mathfrak{h},$ there is a trijective correspondence between

- (i) semisectorial, maximal accretive operators -G;
- (ii) closed, densely defined, semisectorial, accretive quadratic forms (q, Q);
- (iii) holomorphic contraction semigroups P;

Theorem (Ouhabaz)

On $\mathfrak{h},$ there is a trijective correspondence between

- (i) semisectorial, maximal accretive operators -G;
- (ii) closed, densely defined, semisectorial, accretive quadratic forms (q, Q);
- (iii) holomorphic contraction semigroups P;

such that

Theorem (Ouhabaz)

On \mathfrak{h} , there is a trijective correspondence between

- (i) semisectorial, maximal accretive operators -G;
- (ii) closed, densely defined, semisectorial, accretive quadratic forms (q, Q);
- (iii) holomorphic contraction semigroups P;

such that P is the semigroup generated by G,

Theorem (Ouhabaz)

On \mathfrak{h} , there is a trijective correspondence between

- (i) semisectorial, maximal accretive operators -G;
- (ii) closed, densely defined, semisectorial, accretive quadratic forms (q, Q);
- (iii) holomorphic contraction semigroups P;
- such that P is the semigroup generated by G, (q, Q) is the form-generator of P, and

Theorem (Ouhabaz)

On \mathfrak{h} , there is a trijective correspondence between

- (i) semisectorial, maximal accretive operators -G;
- (ii) closed, densely defined, semisectorial, accretive quadratic forms (q, Q);
- (iii) holomorphic contraction semigroups P;

such that P is the semigroup generated by G, (q, Q) is the form-generator of P, and -G is the closed operator associated with (q, Q):

Theorem (Ouhabaz)

On \mathfrak{h} , there is a trijective correspondence between

- (i) semisectorial, maximal accretive operators -G;
- (ii) closed, densely defined, semisectorial, accretive quadratic forms (q, Q);
- (iii) holomorphic contraction semigroups P;

such that P is the semigroup generated by G, (q, Q) is the form-generator of P, and -G is the closed operator associated with (q, Q):

$$P_t v = \lim_{n \to \infty} (I - n^{-1} tG)^{-n} v \quad (v \in \mathfrak{h}),$$

$$Q = \left\{ v \in \mathfrak{h} : \sup_{t > 0} t^{-1} \operatorname{Re} \langle v, (I - P_t) v \rangle < \infty \right\}$$

$$q[v] = \lim_{t \to 0^+} t^{-1} \langle v, (I - P_t) v \rangle$$

Dom $G = \{ v \in Q : \exists_{v' \in \mathfrak{h}} \forall_{u \in Q} \langle u, v' \rangle = -q(u, v) \}, Gv = v'.$

- < ロ > < 部 > < 注 > < 注 > 三 の < ()

For a quadratic form q on \mathfrak{h} with domain \mathcal{Q} ,

For a quadratic form q on \mathfrak{h} with domain \mathcal{Q} ,

• (q, Q) is accretive if

 $\operatorname{\mathsf{Re}} q[v] \ge 0, \quad v \in \mathcal{Q}.$

For a quadratic form q on \mathfrak{h} with domain \mathcal{Q} ,

• (q, Q) is accretive if

 $\operatorname{\mathsf{Re}} q[v] \ge 0, \quad v \in \mathcal{Q}.$

For an accretive quadratic form (q, Q),

For a quadratic form q on \mathfrak{h} with domain \mathcal{Q} ,

• (q, Q) is accretive if

 $\operatorname{\mathsf{Re}} q[v] \ge 0, \quad v \in \mathcal{Q}.$

For an accretive quadratic form (q, \mathcal{Q}) ,

 \bullet An inner-product norm on ${\cal Q}$ is given by

$$\|v\|_q := (\operatorname{Re} q[v] + \|v\|^2)^{1/2};$$

For a quadratic form q on \mathfrak{h} with domain \mathcal{Q} ,

• (q, Q) is accretive if

 $\operatorname{\mathsf{Re}} q[v] \ge 0, \quad v \in \mathcal{Q}.$

For an accretive quadratic form (q, \mathcal{Q}) ,

 \bullet An inner-product norm on ${\mathcal Q}$ is given by

$$\|v\|_q := (\operatorname{Re} q[v] + \|v\|^2)^{1/2};$$

• (q, Q) is *closed* if Q is complete in the norm $\|\cdot\|_q$;

For a quadratic form q on \mathfrak{h} with domain \mathcal{Q} ,

• (q, Q) is accretive if

 $\operatorname{\mathsf{Re}} q[v] \ge 0, \quad v \in \mathcal{Q}.$

For an accretive quadratic form (q, \mathcal{Q}) ,

 \bullet An inner-product norm on ${\mathcal Q}$ is given by

$$\|v\|_q := (\operatorname{Re} q[v] + \|v\|^2)^{1/2};$$

(q, Q) is closed if Q is complete in the norm ||·||_q;
(q, Q) is semisectorial if there is C ≥ 0 such that

$$|\operatorname{Im} q[v]| \leq C ||v||_q, \quad v \in Q.$$

For a quadratic form q on \mathfrak{h} with domain \mathcal{Q} ,

• (q, Q) is accretive if

 $\operatorname{\mathsf{Re}} q[v] \ge 0, \quad v \in \mathcal{Q}.$

For an accretive quadratic form (q, Q),

 \bullet An inner-product norm on ${\cal Q}$ is given by

$$\|v\|_q := (\operatorname{Re} q[v] + \|v\|^2)^{1/2};$$

(q, Q) is closed if Q is complete in the norm ||·||_q;
(q, Q) is semisectorial if there is C ≥ 0 such that

$$|\operatorname{Im} q[v]| \leq C ||v||_q, \quad v \in \mathcal{Q}.$$

Set $\mathfrak{X}_{2}^{Hol}(\mathfrak{h}, \mathsf{k})$ equal to

 $\{(K, L) \in \mathfrak{X}_2(\mathfrak{h}, \mathsf{k}) : -K \text{ is semisectorial and } \mathsf{Dom} \ L = \mathcal{Q}\}$

where Q is the domain of the quadratic form associated with K.

- * ロ * * @ * * 差 * * 差 * … 差 … の & @

Definition

We call $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ holomorphic if its expectation semigroup is holomorphic.

Definition

We call $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ holomorphic if its expectation semigroup is holomorphic. Write $\mathbb{QS}_c\mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$ for the collection of these.

Definition

We call $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ holomorphic if its expectation semigroup is holomorphic. Write $\mathbb{QS}_c\mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$ for the collection of these.

Thus

 $\mathbb{QS}_{c}\mathbb{C}_{\mathrm{M.reg}}(\mathfrak{h},\mathsf{k})\subset\mathbb{QS}_{c}\mathbb{C}_{\mathrm{Hol}}(\mathfrak{h},\mathsf{k}),$

Definition

We call $V \in \mathbb{QS}_c\mathbb{C}(\mathfrak{h}, \mathsf{k})$ holomorphic if its expectation semigroup is holomorphic. Write $\mathbb{QS}_c\mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$ for the collection of these.

Thus

$$\mathbb{QS}_{c}\mathbb{C}_{\mathrm{M.reg}}(\mathfrak{h},\mathsf{k})\subset\mathbb{QS}_{c}\mathbb{C}_{\mathrm{Hol}}(\mathfrak{h},\mathsf{k}),$$

and

 \widetilde{V} is homolorphic if and only if V is.

Holomorphic QS contraction cocycles

- 《口》 《聞》 《臣》 《臣》 三臣 - のの()

Holomorphic QS contraction cocycles

Theorem

Let $V \in \mathbb{QS}_{c}\mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$. Then V is nonsingular.

- < ≣ > <

Theorem

Let $V \in \mathbb{QS}_{c}\mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$. Then V is nonsingular.

Therefore V has an associated quadruple

$$\mathbb{F}^{V} = (K^{V}, L^{V}, \widetilde{L}^{V}, C^{V} - I_{\mathfrak{h} \otimes \mathsf{k}}).$$

Theorem

Let $V \in \mathbb{QS}_c\mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$. Then V is nonsingular.

Therefore V has an associated quadruple

$$\mathbb{F}^{V} = (K^{V}, L^{V}, \widetilde{L}^{V}, C^{V} - I_{\mathfrak{h} \otimes \mathsf{k}}).$$

Theorem

Let $V \in \mathbb{QS}_c \mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$. Then each of its (associated semigroups $Q^{c,d}$ is holomorphic,

Theorem

Let $V \in \mathbb{QS}_c\mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$. Then V is nonsingular.

Therefore V has an associated quadruple

$$\mathbb{F}^{V} = (K^{V}, L^{V}, \widetilde{L}^{V}, C^{V} - I_{\mathfrak{h} \otimes \mathsf{k}}).$$

Theorem

Let $V \in \mathbb{QS}_c \mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$. Then each of its (associated semigroups $Q^{c,d}$ is holomorphic, and so each of its) associated cocycles $V^{c,d}$ is holomorphic.

- < ロ > < 回 > < 臣 > < 臣 > 三 三 の Q ()

Definition

Set $\mathfrak{X}_4^{\text{Hol}}(\mathfrak{h}, \mathsf{k})$ equal to the set of quadruples $\mathbb{F} = (K, L, \widetilde{L}, C - I)$ such that

Definition

Set $\mathfrak{X}_{4}^{\text{Hol}}(\mathfrak{h},\mathsf{k})$ equal to the set of quadruples $\mathbb{F} = (K, L, \widetilde{L}, C - I)$ such that

• -K is a maximal accretive and semisectorial operator on \mathfrak{h} ,

Definition

Set $\mathfrak{X}_{4}^{\text{Hol}}(\mathfrak{h},\mathsf{k})$ equal to the set of quadruples $\mathbb{F} = (K, L, \widetilde{L}, C - I)$ such that

- -K is a maximal accretive and semisectorial operator on \mathfrak{h} ,
- L, \widetilde{L} are operators from \mathfrak{h} to $\mathfrak{h} \otimes \mathsf{k}$ with domain \mathcal{Q} ,

Definition

Set $\mathfrak{X}_{4}^{\text{Hol}}(\mathfrak{h},\mathsf{k})$ equal to the set of quadruples $\mathbb{F} = (K, L, \widetilde{L}, C - I)$ such that

- -K is a maximal accretive and semisectorial operator on \mathfrak{h} ,
- L, \widetilde{L} are operators from \mathfrak{h} to $\mathfrak{h} \otimes \mathsf{k}$ with domain \mathcal{Q} ,
- C is a contraction in $B(\mathfrak{h} \otimes \mathsf{k})$,

Definition

Set $\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h},\mathsf{k})$ equal to the set of quadruples $\mathbb{F} = (K, L, \widetilde{L}, C - I)$ such that

- -K is a maximal accretive and semisectorial operator on \mathfrak{h} ,
- L, \widetilde{L} are operators from \mathfrak{h} to $\mathfrak{h} \otimes \mathsf{k}$ with domain \mathcal{Q} ,
- C is a contraction in $B(\mathfrak{h} \otimes \mathsf{k})$,
- $\|\Delta F\zeta\|^2 \leq 2\operatorname{Re}\Gamma[\zeta]$,

Definition

Set $\mathfrak{X}_{4}^{\text{Hol}}(\mathfrak{h},\mathsf{k})$ equal to the set of quadruples $\mathbb{F} = (K, L, \widetilde{L}, C - I)$ such that

- -K is a maximal accretive and semisectorial operator on \mathfrak{h} ,
- L, \widetilde{L} are operators from \mathfrak{h} to $\mathfrak{h} \otimes \mathsf{k}$ with domain \mathcal{Q} ,
- C is a contraction in $B(\mathfrak{h} \otimes \mathsf{k})$,
- $\|\Delta F\zeta\|^2 \leq 2\operatorname{Re}\Gamma[\zeta]$,

where, in terms of the form-generator (γ, \mathcal{Q}) of the expectation semigroup of V,

Definition

Set $\mathfrak{X}_{4}^{\text{Hol}}(\mathfrak{h},\mathsf{k})$ equal to the set of quadruples $\mathbb{F} = (K, L, \widetilde{L}, C - I)$ such that

- -K is a maximal accretive and semisectorial operator on \mathfrak{h} ,
- L, \widetilde{L} are operators from \mathfrak{h} to $\mathfrak{h} \otimes \mathsf{k}$ with domain \mathcal{Q} ,
- C is a contraction in $B(\mathfrak{h} \otimes \mathsf{k})$,
- $\|\Delta F\zeta\|^2 \leq 2\operatorname{Re}\Gamma[\zeta]$,

where, in terms of the form-generator ($\gamma,\mathcal{Q})$ of the expectation semigroup of V,

$$\mathsf{Dom}\,\mathsf{\Gamma}=\mathsf{Dom}\,\Delta F=\mathcal{Q}\oplus(\mathfrak{h}\otimes\mathsf{k}),$$

$$\Gamma[\zeta] = \gamma[\mathbf{v}] - \{\langle \xi, L\mathbf{v} \rangle + \langle \widetilde{L}\mathbf{v}, \xi \rangle + \langle \xi, (C-I)\xi \rangle\} \text{ for } \zeta = \binom{\mathbf{v}}{\xi},$$

$$\Delta F = \begin{bmatrix} 0 & 0 \\ L & C - I \end{bmatrix}.$$

Remarks on the structure relations

- * ロ > * @ > * 注 > * 注 > … 注 … の Q (

• We have the inclusion

$$\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h},\mathsf{k})\supset\left\{(\mathcal{K},\mathcal{L},\mathcal{M}^{*},\mathcal{C}-\mathcal{I}):\left[\begin{smallmatrix}\mathcal{K}&\mathcal{M}\\\mathcal{L}&\mathcal{C}-\mathcal{I}\end{smallmatrix}
ight]\in\mathcal{C}_{0}(\mathfrak{h},\mathsf{k})
ight\}$$

• We have the inclusion

 $\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h},\mathsf{k})\supset\left\{(K,L,M^{*},C-I):\left[\begin{smallmatrix}K&M\\L&C-I\end{smallmatrix}\right]\in C_{0}(\mathfrak{h},\mathsf{k})\right\}$

• If $(K, L, \widetilde{L}, C - I) \in \mathfrak{X}_{4}^{\operatorname{Hol}}(\mathfrak{h}, \mathsf{k})$ then $(K, L) \in \mathfrak{X}_{2}^{\operatorname{Hol}}(\mathfrak{h}, \mathsf{k})$.

• We have the inclusion

 $\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h},\mathsf{k})\supset\left\{(K,L,M^{*},C-I):\left[\begin{smallmatrix}K&M\\L&C-I\end{smallmatrix}\right]\in C_{0}(\mathfrak{h},\mathsf{k})\right\}$

- If $(K, L, \widetilde{L}, C I) \in \mathfrak{X}_{4}^{\operatorname{Hol}}(\mathfrak{h}, \mathsf{k})$ then $(K, L) \in \mathfrak{X}_{2}^{\operatorname{Hol}}(\mathfrak{h}, \mathsf{k})$.
- In the converse direction,

We have the inclusion

 $\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h},\mathsf{k})\supset\left\{(K,L,M^{*},C-I):\left[\begin{smallmatrix}K&M\\L&C-I\end{smallmatrix}\right]\in C_{0}(\mathfrak{h},\mathsf{k})\right\}$

- If $(K, L, \widetilde{L}, C I) \in \mathfrak{X}_4^{\operatorname{Hol}}(\mathfrak{h}, \mathsf{k})$ then $(K, L) \in \mathfrak{X}_2^{\operatorname{Hol}}(\mathfrak{h}, \mathsf{k})$.
- In the converse direction, if $(K, L) \in \mathfrak{X}_2^{\text{Hol}}(\mathfrak{h}, \mathsf{k})$ then, for any contraction $C \in B(\mathfrak{h} \otimes \mathsf{k})$, we have

$$(K, L, -C^*L, C-I) \in \mathfrak{X}_4^{\operatorname{Hol}}(\mathfrak{h}, \mathsf{k}).$$

We have the inclusion

 $\mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h},\mathsf{k})\supset\left\{(K,L,M^{*},C-I):\left[\begin{smallmatrix}K&M\\L&C-I\end{smallmatrix}\right]\in C_{0}(\mathfrak{h},\mathsf{k})\right\}$

- If $(K, L, \widetilde{L}, C I) \in \mathfrak{X}_4^{\operatorname{Hol}}(\mathfrak{h}, \mathsf{k})$ then $(K, L) \in \mathfrak{X}_2^{\operatorname{Hol}}(\mathfrak{h}, \mathsf{k})$.
- In the converse direction, if $(K, L) \in \mathfrak{X}_2^{\text{Hol}}(\mathfrak{h}, \mathsf{k})$ then, for any contraction $C \in B(\mathfrak{h} \otimes \mathsf{k})$, we have

$$(K, L, -C^*L, C-I) \in \mathfrak{X}_4^{\operatorname{Hol}}(\mathfrak{h}, \mathsf{k}).$$

In particular, (K, L, -L, 0), $(K, L, 0, -I) \in \mathfrak{X}_4^{\mathrm{Hol}}(\mathfrak{h}, \mathsf{k})$.

The stochastic generator of a homomorphic QS cocycle

- * ロ * * @ * * 注 * 注 * 三 * のへの

Theorem

The prescription

$$V \mapsto \mathbb{F}^V$$

defines a bijection

$$\mathbb{QS}_{c}\mathbb{C}_{\mathrm{Hol}}(\mathfrak{h},\mathsf{k}) o \mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h},\mathsf{k}),$$

Theorem

The prescription

$$V\mapsto \mathbb{F}^V$$

defines a bijection

$$\mathbb{QS}_{c}\mathbb{C}_{\mathrm{Hol}}(\mathfrak{h},\mathsf{k}) \to \mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h},\mathsf{k}),$$

'extending' the inverse of our earlier bijection

$$C_0(\mathfrak{h},\mathsf{k}) \to \mathbb{QS}_c\mathbb{C}_{\mathrm{M.reg}}(\mathfrak{h},\mathsf{k}), \quad F \mapsto V^F.$$

Theorem

The prescription

$$V\mapsto \mathbb{F}^V$$

defines a bijection

$$\mathbb{QS}_{c}\mathbb{C}_{\mathrm{Hol}}(\mathfrak{h},\mathsf{k}) \to \mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h},\mathsf{k}),$$

'extending' the inverse of our earlier bijection

$$C_0(\mathfrak{h},\mathsf{k}) \to \mathbb{QS}_c\mathbb{C}_{\mathrm{M.reg}}(\mathfrak{h},\mathsf{k}), \quad F \mapsto V^F.$$

This justifies the following definition.

Theorem

The prescription

$$V\mapsto \mathbb{F}^V$$

defines a bijection

$$\mathbb{QS}_{c}\mathbb{C}_{\mathrm{Hol}}(\mathfrak{h},\mathsf{k}) \to \mathfrak{X}_{4}^{\mathrm{Hol}}(\mathfrak{h},\mathsf{k}),$$

'extending' the inverse of our earlier bijection

$$C_0(\mathfrak{h},\mathsf{k}) o \mathbb{QS}_c \mathbb{C}_{\mathrm{M.reg}}(\mathfrak{h},\mathsf{k}), \quad F \mapsto V^F.$$

This justifies the following definition.

Definition

For $V \in \mathbb{QS}_c \mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$, we refer to \mathbb{F}^V as the *stochastic generator* of V.

<ロ> <同> < 同> < 目> < 目> < 目> = のQ()

Theorem

Let $V \in \mathbb{QS}_{c}\mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$.

Theorem

Let $V \in \mathbb{QS}_c\mathbb{C}_{\mathrm{Hol}}(\mathfrak{h}, \mathsf{k})$. Then

$$\mathbb{E}_0\big[V_t^*(x\otimes I_{\mathcal{F}})V_t\big] = \mathcal{T}_t^{\mathcal{K},L}(x), \quad x\in B(\mathfrak{h}), t\geq 0.$$
(2)

Theorem

Let $V \in \mathbb{QS}_{c}\mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$. Then

$$\mathbb{E}_0\big[V_t^*(x\otimes I_{\mathcal{F}})V_t\big] = \mathcal{T}_t^{\mathcal{K},\mathcal{L}}(x), \quad x\in B(\mathfrak{h}), t\geq 0.$$
(2)

where $(K, L) \in \mathfrak{X}_2^{Hol}(\mathfrak{h}, \mathsf{k})$ is the truncation of the stochastic generator of V to its first two components

Theorem

Let $V \in \mathbb{QS}_{c}\mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$. Then

$$\mathbb{E}_0\big[V_t^*(x\otimes I_{\mathcal{F}})V_t\big] = \mathcal{T}_t^{\mathcal{K},\mathcal{L}}(x), \quad x\in B(\mathfrak{h}), t\geq 0.$$
(2)

where $(K, L) \in \mathfrak{X}_{2}^{Hol}(\mathfrak{h}, k)$ is the truncation of the stochastic generator of V to its first two components [i.e. \mathbb{F}^{V} is of the form (K, L, *, *)].

Theorem

Let $V \in \mathbb{QS}_c\mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$. Then

$$\mathbb{E}_0\big[V_t^*(x\otimes I_{\mathcal{F}})V_t\big] = \mathcal{T}_t^{\mathcal{K},\mathcal{L}}(x), \quad x\in B(\mathfrak{h}), t\geq 0.$$
(2)

where $(K, L) \in \mathfrak{X}_{2}^{Hol}(\mathfrak{h}, k)$ is the truncation of the stochastic generator of V to its first two components [i.e. \mathbb{F}^{V} is of the form (K, L, *, *)].

Corollary

Let $(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, \mathsf{k}).$

Theorem

Let $V \in \mathbb{QS}_c\mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$. Then

$$\mathbb{E}_0\big[V_t^*(x\otimes I_{\mathcal{F}})V_t\big] = \mathcal{T}_t^{\mathcal{K},\mathcal{L}}(x), \quad x\in B(\mathfrak{h}), t\geq 0.$$
(2)

where $(K, L) \in \mathfrak{X}_{2}^{Hol}(\mathfrak{h}, k)$ is the truncation of the stochastic generator of V to its first two components [i.e. \mathbb{F}^{V} is of the form (K, L, *, *)].

Corollary

Let
$$(K, L) \in \mathfrak{X}_{2}^{Hol}(\mathfrak{h}, \mathsf{k})$$
. Then, letting $V = V^{\mathbb{F}}$, where $\mathbb{F} = (K, L, -C^*L, C-I)$ for a contraction $C \in B(\mathfrak{h} \otimes \mathsf{k})$,

Theorem

Let $V \in \mathbb{QS}_c\mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$. Then

$$\mathbb{E}_0\big[V_t^*(x\otimes I_{\mathcal{F}})V_t\big] = \mathcal{T}_t^{\mathcal{K},\mathcal{L}}(x), \quad x\in B(\mathfrak{h}), t\geq 0.$$
(2)

where $(K, L) \in \mathfrak{X}_{2}^{Hol}(\mathfrak{h}, k)$ is the truncation of the stochastic generator of V to its first two components [i.e. \mathbb{F}^{V} is of the form (K, L, *, *)].

Corollary

Let
$$(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, \mathsf{k})$$
. Then, letting $V = V^{\mathbb{F}}$, where
 $\mathbb{F} = (K, L, -C^*L, C - I)$ for a contraction $C \in B(\mathfrak{h} \otimes \mathsf{k})$, e.g.
 $\mathbb{F} = (K, L, -L, 0)$,

Theorem

Let $V \in \mathbb{QS}_c\mathbb{C}_{Hol}(\mathfrak{h}, \mathsf{k})$. Then

$$\mathbb{E}_0\big[V_t^*(x\otimes I_{\mathcal{F}})V_t\big] = \mathcal{T}_t^{\mathcal{K},\mathcal{L}}(x), \quad x\in B(\mathfrak{h}), t\geq 0.$$
(2)

where $(K, L) \in \mathfrak{X}_{2}^{Hol}(\mathfrak{h}, k)$ is the truncation of the stochastic generator of V to its first two components [i.e. \mathbb{F}^{V} is of the form (K, L, *, *)].

Corollary

Let $(K, L) \in \mathfrak{X}_{2}^{\mathrm{Hol}}(\mathfrak{h}, \mathsf{k})$. Then, letting $V = V^{\mathbb{F}}$, where $\mathbb{F} = (K, L, -C^*L, C-I)$ for a contraction $C \in B(\mathfrak{h} \otimes \mathsf{k})$, e.g. $\mathbb{F} = (K, L, -L, 0)$, (2) holds.

Acknowledgements

- < ロ > < 回 > < 臣 > < 臣 > 三 三 の Q ()

This is joint work with Kalyan Sinha.

It is supported by the UKIERI Research Collaboration Network Quantum Probability - Noncommutative Geometry - Quantum Information